

Town of Delafield, Wisconsin

Preliminary

Stormwater Management Plan

Prepared by:

Trio Engineering LLC

4100 N. Calhoun Road Brookfield, Wisconsin 53005 Contact: Josh Pudelko, P.E. Telephone: (262) 790-1480 Email: info@trioeng.com

Sound Stormwater Design LLC

Contact: Jayme Sisel, P.E. Telephone: (414) 286-4739 Email: jayme.sisel@soundstormwater.com

> March 20, 2023 Revised June 22, 2023 Revised December 22, 2023

TABLE OF CONTENTS

Introduction1	Ĺ
Owner/ Developer 1	L
Design Requirements1	L
Analysis Overview	2
Pre-Development Watershed Description	3
Post-Development Site Drainage Description	3
Stormwater Detention Basin Design & Summary5	5
Peak Discharge Summaries	5
Water Quality	5
Infiltration	5
Conclusion	7

APPENDICES

Figures

APPENDIX A	Pre-Development Hydrologic Analysis
APPENDIX B	Post-Development Hydrologic Analysis
APPENDIX C	Treatment Analysis
APPENDIX D	Infiltration Analysis
APPENDIX E	Soil Survey and Soil Boring Logs

Introduction

"Welshire Farm" is a proposed multi-family and single-family residential development on a 151.05acre parcel located northwest of the intersection of Golf Road and Elmhurst Road in the Town of Delafield, Waukesha County, Wisconsin. Refer to Figure 1 for a general location of the project site.

The proposed subdivision design integrates with the existing topography, preserving trees and wetlands to the maximum extent practicable, and situates ponds and basins where runoff naturally flows, but with controlled outlets that reduce runoff rates and redirect runoff to adequate discharge points. This design approach minimizes site grading and maximizes the existing trees and wetlands that can be retained on the site.

This report documents the design computations for pre-development and post-development conditions and presents a plan for stormwater management that meets the requirements of the Town of Delafield, Waukesha County, and the Wisconsin Department of Natural Resources (WDNR).

Owner/ Developer

The owner, developer, and responsible entity for installation and maintenance of the stormwater management practices is:

Neumann Developments, Inc

N27 W24025 Paul Ct, Suite 100 Pewaukee, Wisconsin 53072 Contact: Bryan Lindgren Phone: (262) 542-9200

Design Requirements

The following design standards have been used to develop the stormwater management plan for the "Welshire Farm" project:

- <u>Waukesha County</u> Chapter 14, Article VIII, Stormwater Management & Erosion Control Ordinance
- <u>Wisconsin Department of Natural Resources (WDNR)</u> Technical Standards, NR151, and NR216
- Summary of design requirements:
 - <u>Peak Discharge</u>:
 - Waukesha County: The peak flow discharge rates of stormwater runoff from the site under the post-development site conditions shall not exceed the rates under the pre-development conditions for the 1, 2, 10, and 100-year, 24-hour design storm events.

- Water Quality (Total Suspended Solids): Reduce to the maximum extent practicable the total suspended solids load by 80%, based on an average annual rainfall, as compared to no runoff management controls.
- Infiltration: For low impervious developments: 0
 - Infiltrate sufficient runoff volume so that the post-development infiltration volume is at least 90 percent of pre-development infiltration volume, based on an average annual rainfall.
 - No more than 1 percent of the post-construction site is required as an effective infiltration area.

Analysis Overview

The Stormwater Management Plan for the "Welshire Farm" subdivision has been designed in accordance with the Town of Delafield, Waukesha County, and all applicable state requirements. Pre-development and post-development stormwater runoff conditions for the site were analyzed for: runoff volume, peak volume, discharge, detention basin storage capacity required, outlet structure and storm sewer system requirements. The software package used for modeling and analysis was HydroCAD Version 10.10 software by HydroCAD Software Solutions. HydroCAD uses NRCS methods to generate runoff and pond routing hydrographs. The model's capabilities include modeling simple drainage basins, combining hydrographs to determine runoff and storage requirements, and detention basin and outlet structure sizing.

MSE3 rainfall distributions were used for modeling the 1, 2, 10 and 100-year, 24-hour storm events. The corresponding rainfall data used for the modeling was taken from Table 3 of Chapter 14 of the County's Ordinance and is shown in the following table.

Design Rainfall Values					
Storm Recurrence	24-hour Rainfall				
Interval	Depths				
1-year	2.4 inches				
2-year	2.7 inches				
10-year	3.81 inches				
100-year	6.18 inches				

TABLE 1						
Design Rainfall Values						
Storm Recurrence	24-hour Rainfall					
Interval	Depths					

Soil types for the site were determined from NRCS Soil Survey for Waukesha County and from soil boring logs prepared by Professional Service Industries (PSI). The Soil Survey identifies the soils at the site as mostly Theresa silt loam and Knowles silt loam with some limited areas of Hochheim loam and Ritchey silt loam soils. The soil boring logs indicated the soils encountered as generally 1 to 4 feet of dark brown clay to silty clay with organics underlain by clayey sand and sand with gravel extending to the termination of the borings. Groundwater was encountered with boring B-2, which was completed within the wetland area, at a depth of about 4 feet below existing grade. Groundwater was not observed during or at completion of drilling within the remaining boring locations. Based on this, a hydrologic soil group C was used to determine runoff curve numbers for the site. Refer to Appendix E for details.

Pre-Development Watershed Description

The project site is approximately 151.05-acres in size and is occupied by agricultural fields, woodlands, wetlands, residential homes, and a former farmstead with outbuildings. Surface drainage for the majority of the site is generally towards an on-site wetland that flows south to north and eventually drains to a culvert at Oakton Road that discharges to Pewaukee Lake. The remainder of the site slopes towards roadside ditches at Glen Cove Road, Elmhurst Road, and Gold Road.

Land cover types, drainage boundaries and flow paths are shown on Figure 2, Pre-Development Conditions Plan. The following table summarizes the results of the stormwater model for predevelopment conditions. A schematic plan of the hydrological analysis and detailed hydrological computations for pre-development conditions are included in Appendix A.

Subarea, or	Description	Area	Imp. Area	Time of Conc.	Peak Flow Rate (cfs)			
Junction	<u> </u>	(acres)	(acres)	(minutes)	1-year	2-year	10-year	100-year
1	Subarea	11.87	0.00	12	10.95	14.33	28.30	61.73
1D	Depression	-	-	-	0.00	0.00	0.00	0.65
2	Subarea	14.48	0.00	13	13.44	17.42	34.00	73.06
3	Subarea	4.56	0.00	10	3.51	4.76	10.07	23.21
4	Subarea	1.10	0.00	9	1.24	1.61	3.10	6.62
5	Subarea	28.78	0.00	14	24.09	31.58	62.53	136.90
6	Subarea	11.23	0.21	22	8.19	10.65	20.84	45.09
6D	Depression	-	-	-	2.16	3.09	7.15	16.64
7	Subarea	12.83	0.03	29	7.24	9.53	19.06	42.19
7D	Depression	-	-	-	5.13	7.49	17.31	39.43
8	Subarea	26.11	0.72	28	13.97	18.61	38.15	85.99
1L	West Subwatershed	26.35	0.00	-	13.44	17.42	34.00	73.06
2L	Northwest Subwatershed	4.56	0.00	-	3.51	4.76	10.07	23.21
3L	North Subwatershed	29.88	0.00	-	24.99	32.75	64.83	142.66
4L	Southeast Subwatershed	50.17	0.96	-	17.42	23.83	51.96	119.33

TABLE 2 Pre-Development Conditions

Post-Development Site Drainage Description

The proposed development includes the construction of twenty-eight (28) 2-family condominium units and one hundred fifty-five (155) single-family lots. The proposed plan will disturb approximately 100-acres and will result in a net increase in impervious area of approximately 28.42 acres. Figure 3, Post-Development Conditions Plan, shows the proposed land cover, grading, drainage boundaries, flow paths, and proposed site and stormwater management improvements. The following table summarizes the results of the stormwater model for post-development

conditions. A schematic plan of the hydrological analysis and detailed hydrological computations for post-development conditions are included in Appendix B.

Subarea,	Description	Area	Imp.	Time of	Peak Flow Rate (cfs)			
or Junction	Description	(acres)	area (acres)	(minutes)	1-year	2-year	10-year	100-year
1	Subarea	11.05	3.17	10	14.43	18.14	32.93	66.94
1B	Bioretention Basin	-	-	-	0.87	1.16	1.84	5.42
2	Subarea	1.62	0.69	6	3.38	4.08	6.77	12.61
2B	Infiltration Basin	-	-	-	0.59	0.97	2.09	10.14
3	Subarea	13.36	5.72	15	18.90	23.09	39.32	75.17
3P	Pond	-	-	-	0.43	2.33	19.78	36.55
4	Subarea	4.39	0.58	10	4.65	6.01	11.57	24.71
4B	Infiltration Basin	-	-	-	0.00	0.00	0.00	0.39
5	Subarea	2.59	0.29	10	2.54	3.32	6.54	14.21
5RG	Rain Garden	-	-	-	0.19	0.23	2.53	13.05
6	Subarea	8.80	2.99	10	12.26	15.29	27.25	54.50
6P	Pond	-	-	-	0.37	1.44	13.29	25.56
7a	Subarea	6.38	1.00	10	6.76	8.74	16.82	35.91
7RG	Rain Garden	-	-	-	3.77	6.19	15.43	34.12
7b	Subarea	5.22	1.67	10	7.74	9.57	16.77	33.02
7P	Pond	-	-	-	1.16	1.56	4.08	12.97
8	Subarea	4.61	0.72	10	4.88	6.31	12.15	25.95
8B	Infiltration Basin	-	-	-	0.15	0.20	0.32	9.74
9	Subarea	10.82	3.51	6	19.06	23.51	40.89	79.67
9P	Pond	-	-	-	0.29	0.35	2.16	8.76
10	Subarea	2.04	0.25	10	2.16	2.79	5.38	11.48
10B	Infiltration Basin	-	-	-	0.00	0.00	0.00	0.17
11	Subarea	7.98	2.96	6	14.06	17.34	30.16	58.76
11P	Pond	-	-	-	0.39	0.85	3.31	15.76
12	Subarea	7.03	1.88	10	8.59	10.89	20.14	41.52
12P	Pond	-	-	-	0.31	0.60	8.01	14.97
13	Subarea	5.25	1.11	10	6.41	8.13	15.04	31.01
13P	Pond	-	-	-	0.40	0.46	1.11	9.41
14	Subarea	0.41	0.03	10	0.34	0.46	0.94	2.13
15	Subarea	4.28	0.73	10	4.53	5.86	11.28	24.09
16	Subarea	11.57	1.42	10	10.50	13.88	27.91	61.86
17	Subarea	3.56	0.66	10	3.77	4.88	9.38	20.04
1L	West Subwatershed	21.31	6.96	-	4.01	5.15	22.80	52.33
2L	Northwest Subwatershed	5.66	1.14	-	0.58	0.75	1.38	10.36
3L	North Subwatershed	49.43	13.91	-	5.14	6.56	18.21	67.12
4L	Southeast Subwatershed	34.56	7.37	-	10.98	14.56	30.27	89.93

TABLE 3 Post-Development Conditions

Stormwater Detention Basin Design & Summary

The stormwater management plan proposes one (1) bioretention basin, two (2) rain gardens, and four (4) infiltration basins as the primary means of stormwater management for the site. In conformance with the County and WDNR requirements, the ponds and basins have been designed with 4:1 side slopes on the berms, 10-foot top of berm widths, and 10-foot wide safety shelfs below the normal water level within the ponds. Additionally, all outfall structures discharge to energy dissipating level spreaders prior to discharging into the adjacent wetlands.

Understanding the sensitivity of the site, additional measures were taken to maximize infiltration opportunities. This included over-excavating the infiltration basins and enhancing them with engineered soil in order to expose existing granular subsoils that are more suitable for infiltration. In addition, rain gardens were placed in select open space areas where water can have the opportunity to pond (maximum depth 9-inch) and infiltrate slowly into the subsurface at a lesser rate (0.07 to 0.11 in/hr) without negatively impacting the development. These measures were done to significantly reduce peak discharge rates and volumes at all four discharge points for the 1, 2, 10, and 100-yr, 24-hour storms. The only exception where there was a slight increase in runoff volume was for the Northwest Subwatershed which discharges to a larger wetland/stormwater complex to the west.

Peak Discharge Summaries

Waukesha County requires post-development peak discharge rates to be no greater than predevelopment discharge rates for the 1, 2, 10, and 100-yr, 24-hr design storms. The following table compares the results of the analysis from a peak discharge standpoint.

TABLE 4Comparison of Peak Discharge								
West Subwate	West Subwatershed (Link 1L)							
	Pre-Development		Post-Development					
1-year	13.44 cfs	>	4.01 cfs					
2-year	17.42 cfs	>	5.15 cfs					
10-year	34.00 cfs	>	22.80 cfs					
100-year	73.06 cfs	>	52.33 cfs					
Northwest Su	bwatershed (Link 2L)							
	Pre-Development		Post-Development					
1-year	3.51 cfs	>	0.58 cfs					
2-year	4.76 cfs	>	0.75 cfs					
10-year	10.07 cfs	>	1.38 cfs					
100-year	23.21 cfs	>	10.36 cfs					

North Subwatershed (Link 3L)						
	Pre-Development		Post-Development			
1-year	24.99 cfs	>	5.14 cfs			
2-year	32.75 cfs	>	6.56 cfs			
10-year	64.83 cfs	>	18.21 cfs			
100-year	142.66 cfs	>	67.12 cfs			
Southeast Sul	owatershed (Link 4L)					
	Pre-Development		Post-Development			
1-year	17.42 cfs	>	10.98 cfs			
2-year	23.83 cfs	>	14.56 cfs			
10-year	51.96 cfs	>	30.27 cfs			
100-year	119.33 cfs	>	89.93 cfs			

TABLE 4	
Comparison of Peak Discharge	

Water Quality

The Waukesha County requires new development sites to be designed to remove 80 percent of TSS, based on an average annual rainfall as compared to no runoff management controls. Stormwater quality was analyzed using SLAMM Version 10.5.0 software, developed by Robert Pitt and John Voorhees. The results of the SLAMM analysis indicate that approximately 81.8 percent of TSS will be removed from stormwater as a result of the proposed wet detention ponds, rain gardens, bioretention basin, infiltration basins and the disconnected nature of select roof and patio areas in conformance with WDNR's connected impervious guidance outlined in Document 3800-2020-1.

Based on conversations with the WDNR, to realize the treatment credit for disconnected surfaces two models are created. The first model is run with all surfaces modeled as connected to determine the total TSS loading produced prior to any treatment practices. The second model is run with select surfaces disconnected (such as backyard roof and patio areas) to determine the total TSS loading released after treatment practices. The particulate solids reduction percentage is calculated by dividing the total TSS removed by the total TSS loading produced (prior to any BMPs). Detailed computations are included in Appendix C.

Infiltration

Waukesha County's Chapter 14 requires low imperviousness developments to infiltrate sufficient runoff volume so that the post-development infiltration volume is at least 90% of the predevelopment infiltration volume, based on an average annual rainfall. However, no more than 1% of the project site is required as an effective infiltration area.

One (1) bioretention basin, two (2) rain gardens, and four (4) infiltration basins were incorporated into the development plan to meet infiltration performance standards for the proposed subdivision. Design infiltration rates for the site were taken from Table 2 of WDNR Technical Standard 1002, Site Evaluation for Stormwater Infiltration. Static infiltrations rates for the in-situ soils at each basin

were based on the least permeable soil horizon within 5 feet below the native soil interface. Infiltration calculations were based on the entire 151.05-acre site and were analyzed using winSLAMM to determine runoff volumes for both pre-development and post-development conditions. The results of the winSLAMM analysis indicate that the site will infiltrate approximately 94.1 percent of the pre-development infiltration volume. Detailed computations are included in Appendix D.

Conclusion

The proposed development will maintain compliance with the Town of Delafield, Waukesha County, and the WDNR's requirements for control of stormwater quantity, quality, and infiltration.

Prepared by:

SOUND STORMWATER DESIGN LLC

jazzer

Jayme Sisel, P.E.

FIGURES

Φ 03 D:\Jobs\2023\2023-0 6/21/2023 10:14 PM

SOUND STORMWATER DESIGN

Copper Oaks Ct. Muskego, WI 53150 414.286.4739 jayme.sisel@soundstormwater.com

CLIENT: NEUMANN DEVELOPMENT, INC.

PROJECT TITLE: WELSHIRE FARM DEVELOPMENT GOLF ROAD TOWN OF DELAFIELD, WISCONSIN

DATE:	02-03-23
JOB NO:	2023-003

SHEET TITLE: PRE-DEVELOPMENT CONDITIONS PLAN

FIGURE:

SOUND STORMWATER DESIGN

Copper Oaks Ct. Muskego, WI 53150 414.286.4739 jayme.sisel@soundstormwater.com

CLIENT: NEUMANN DEVELOPMENT, INC.

PROJECT TITLE: WELSHIRE FARM DEVELOPMENT GOLF ROAD TOWN OF DELAFIELD, WISCONSIN

DATE:	02-03-23
JOB NO:	2023-003

SHEET TITLE: POST-DEVELOPMENT CONDITIONS PLAN

FIGURE:

APPENDIX A Pre-Development Hydrologic Analysis

Even	t#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
		Name				(hours)		(inches)	
	1	1 yr	MSE 24-hr	3	Default	24.00	1	2.40	2
	2	2 yr	MSE 24-hr	3	Default	24.00	1	2.70	2
	3	10 yr	MSE 24-hr	3	Default	24.00	1	3.81	2
	4	100 yr	MSE 24-hr	3	Default	24.00	1	6.18	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
92.150	78	cropland - C soils (1, 2, 3, 4, 5, 6, 7, 8)
0.720	98	impervious (8)
4.130	74	maintained lawn - C soils (7, 8)
0.440	74	offsite lawn (ROW) - C soils (6, 7)
0.240	98	offsite road (6, 7)
13.280	70	woodland - C soils (1, 2, 3, 5, 6, 7, 8)
110.960	77	TOTAL AREA

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: Subarea	Runoff Area=11.	.870 ac 0.00% lm	pervious Runo	ff Depth>0.68"
Flow Length=400'	Slope=0.0200 '/' T	c=11.7 min CN=3	77 Runoff=10.9	95 cfs 0.670 af
Subcatchment 2: Subarea	Runoff Area=14.	.480 ac 0.00% Im	pervious Runo	ff Depth>0.72"
Flow Length=630'	Slope=0.0200 '/' T	c=13.4 min CN=7	78 Runoff=13.4	4 cfs_0.872 af
Subcatchment 3: Subarea	Runoff Area=4.	.560 ac 0.00% Im	pervious Runo	ff Depth>0.55"
Flow Length=630	' Slope=0.0400 '/'	Tc=9.9 min CN=	=74 Runoff=3.5	1 cfs_0.210 af
Subcatchment 4: Subarea	Runoff Area=1.	.100 ac 0.00% Im	pervious Runo	ff Depth>0.72"
Flow Length=190	' Slope=0.0300 '/'	Tc=8.6 min CN=	=78 Runoff=1.2	4 cfs_0.066 af
Subcatchment 5: Subarea	Runoff Area=28.	.780 ac 0.00% Im	pervious Runo	ff Depth>0.68"
Flow Length=740'	Slope=0.0200 '/' T	c=14.2 min CN=7	77 Runoff=24.0	9 cfs 1.625 af
Subcatchment 6: Subarea	Runoff Area=11.	.230 ac 1.87% Im	pervious Runo	ff Depth>0.72"
	Flow Length=760'	Tc=21.5 min CN=	=78 Runoff=8.1	9 cfs_0.676 af
Subcatchment7: Subarea	Runoff Area=12	.830 ac 0.23% Im	pervious Runo	ff Depth>0.68"
Flow Length=1,725'	Slope=0.0100 '/'	Tc=29.4 min CN=	=77 Runoff=7.2	4 cfs_0.723 af
Subcatchment8: Subarea	Runoff Area=26.	.110 ac 2.76% Im	pervious Runo	ff Depth>0.63"
Flow Length=1,580'	Slope=0.0100 '/' T	c=27.9 min CN=7	76 Runoff=13.9	07 cfs 1.377 af
Pond 1D: Existing Depression	Peak Elev=938.	58' Storage=0.510	af Inflow=10.9	95 cfs 0.670 af
Discarded=0.19 c	fs 0.184 af Prima	ry=0.00 cfs 0.000	af Outflow=0.1	9 cfs 0.184 af
Pond 6D: Existing Depression	Peak Elev=917	.77' Storage=0.33	9 af Inflow=8.1	9 cfs 0.676 af
Discarded=0.07 c	fs 0.042 af Prima	ry=2.16 cfs 0.512	af Outflow=2.2	2 cfs 0.554 af
Pond 7D: Existing Depression	Peak Elev=917	.76' Storage=0.15	8 af Inflow=7.2	24 cfs 1.235 af
Discarded=0.03 c	fs 0.020 af Prima	ry=5.13 cfs 1.161	af Outflow=5.1	7 cfs 1.182 af
Link 1L: West Subwatershed			Inflow=13.4 Primary=13.4	l4 cfs 0.872 af l4 cfs 0.872 af
Link 2L: Northwest Subwatershed			Inflow=3.5 Primary=3.5	51 cfs 0.210 af 51 cfs 0.210 af
Link 3L: North Subwatershed (drainage sv	vale)		Inflow=24.9 Primary=24.9	99 cfs 1.691 af 99 cfs 1.691 af
Link 4L: Southeast Subwatershed			Inflow=17.4 Primary=17.4	l2 cfs 2.539 af l2 cfs 2.539 af

Total Runoff Area = 110.960 ac Runoff Volume = 6.221 af	Average Runoff Depth = 0.67"
99.13% Pervious = 110.000 ac	0.87% Impervious = 0.960 ac

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea	Runoff Area=1	1.870 ac 0.0	0% Impervious	Runoff Dep	oth>0.87"
Flow Length=400' S	lope=0.0200 '/'	Tc=11.7 min	CN=77 Run	off=14.33 cfs	0.858 af
Subcatchment 2: Subarea	Runoff Area=1	4.480 ac 0.0	0% Impervious	Runoff Dep	oth>0.92"
Flow Length=630' S	lope=0.0200 '/'	Tc=13.4 min	CN=78 Run	off=17.42 cfs	1.110 af
Subcatchment 3: Subarea	Runoff Area=	4.560 ac 0.0	0% Impervious	Runoff Dep	oth>0.72"
Flow Length=630'	Slope=0.0400 '	/' Tc=9.9 mir	1 CN=74 Ru	noff=4.76 cfs	0.275 af
Subcatchment 4: Subarea	Runoff Area=	1.100 ac 0.0	0% Impervious	Runoff Dep	oth>0.92"
Flow Length=190'	Slope=0.0300 '	/' Tc=8.6 mir	n CN=78 Ru	noff=1.61 cfs	0.084 af
Subcatchment 5: Subarea	Runoff Area=2	8.780 ac 0.0	0% Impervious	Runoff Dep	oth>0.87"
Flow Length=740' S	lope=0.0200 '/'	Tc=14.2 min	CN=77 Rune	off=31.58 cfs	2.081 af
Subcatchment 6: Subarea	Runoff Area=1	1.230 ac 1.8	7% Impervious	Runoff Dep	oth>0.92"
	w Length=760'	Tc=21.5 min	CN=78 Run	off=10.65 cfs	0.860 af
Subcatchment 7: Subarea	Runoff Area=1	2.830 ac 0.2	3% Impervious	Runoff Dep	oth>0.87"
Flow Length=1,725'	Slope=0.0100 '/'	Tc=29.4 mir	1 CN=77 Ru	noff=9.53 cfs	0.926 af
Subcatchment 8: Subarea	Runoff Area=2	6.110 ac 2.7	6% Impervious	Runoff Dep	oth>0.82"
Flow Length=1,580' S	lope=0.0100 '/'	Tc=27.9 min	CN=76 Rune	off=18.61 cfs	1.777 af
Pond 1D: Existing Depression	Peak Elev=938	8.68' Storage=	=0.669 af Inflo	ow=14.33 cfs	0.858 af
Discarded=0.23 cfs	0.216 af Prim	ary=0.00 cfs	0.000 af Outf	low=0.23 cfs	0.216 af
Pond 6D: Existing Depression	Peak Elev=917	′.86' Storage=	=0.423 af Inflo	w=10.65 cfs	0.860 af
Discarded=0.08 cfs	0.045 af Prim	ary=3.09 cfs	0.690 af Outf	low=3.17 cfs	0.735 af
Pond 7D: Existing Depression	Peak Elev=91	7.84' Storage	e=0.200 af Inf	low=9.53 cfs	1.616 af
Discarded=0.04 cfs	3 0.022 af Prim	ary=7.49 cfs	1.540 af Outf	low=7.53 cfs	1.561 af
Link 1L: West Subwatershed			Inflo Prima	ow=17.42 cfs ary=17.42 cfs	1.110 af 1.110 af
Link 2L: Northwest Subwatershed			Int Prim	iow=4.76 cfs ary=4.76 cfs	0.275 af 0.275 af
Link 3L: North Subwatershed (drainage swa	ale)		Inflo Prima	ow=32.75 cfs ary=32.75 cfs	2.165 af 2.165 af
Link 4L: Southeast Subwatershed			Infle Prima	ow=23.83 cfs ary=23.83 cfs	3.316 af 3.316 af
	D (())				4

Total Runoff Area = 110.960 ac Runoff Volume = 7.971 af	Average Runoff Depth = 0.86"
99.13% Pervious = 110.000 ac	0.87% Impervious = 0.960 ac

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: Subarea	Runoff Area=11.870 ac	0.00% Impervious	Runoff Depth>1.66"
Flow Length=400'	Slope=0.0200 '/' Tc=11.7	min CN=77 Runof	f=28.30 cfs 1.645 af
Subcatchment 2: Subarea	Runoff Area=14.480 ac	0.00% Impervious	Runoff Depth>1.74"
Flow Length=630'	Slope=0.0200 '/' Tc=13.4	min CN=78 Runof	f=34.00 cfs 2.094 af
Subcatchment 3: Subarea	Runoff Area=4.560 ac	0.00% Impervious	Runoff Depth>1.46"
Flow Length=630	Slope=0.0400 '/' Tc=9.9	min CN=74 Runof	f=10.07 cfs 0.554 af
Subcatchment 4: Subarea	Runoff Area=1.100 ac	0.00% Impervious	Runoff Depth>1.74"
Flow Length=19	00' Slope=0.0300 '/' Tc=8.0	6 min CN=78 Runc	ff=3.10 cfs 0.159 af
Subcatchment 5: Subarea	Runoff Area=28.780 ac	0.00% Impervious	Runoff Depth>1.66"
Flow Length=740'	Slope=0.0200 '/' Tc=14.2	min CN=77 Runof	f=62.53 cfs 3.989 af
Subcatchment 6: Subarea	Runoff Area=11.230 ac	1.87% Impervious	Runoff Depth>1.73"
	Flow Length=760' Tc=21.5	min CN=78 Runof	f=20.84 cfs 1.623 af
Subcatchment 7: Subarea	Runoff Area=12.830 ac	0.23% Impervious	Runoff Depth>1.66"
Flow Length=1,725'	Slope=0.0100 '/' Tc=29.4	min CN=77 Runof	f=19.06 cfs 1.776 af
Subcatchment 8: Subarea	Runoff Area=26.110 ac	2.76% Impervious	Runoff Depth>1.59"
Flow Length=1,580'	Slope=0.0100 '/' Tc=27.9	min CN=76 Runof	f=38.15 cfs 3.461 af
Pond 1D: Existing Depression	Peak Elev=939.00' Stor	rage=1.346 af Inflow	v=28.30 cfs 1.645 af
Discarded=0.35	cfs 0.335 af Primary=0.00	cfs 0.000 af Outflo	w=0.35 cfs 0.335 af
Pond 6D: Existing Depression	Peak Elev=918.13' Stor	rage=0.766 af Inflow	r=20.84 cfs 1.623 af
Discarded=0.12	cfs 0.055 af Primary=7.15	cfs 1.433 af Outflo	w=7.27 cfs 1.488 af
Pond 7D: Existing Depression	Peak Elev=918.11' Stor	rage=0.368 af Inflow	r=21.36 cfs 3.209 af
Discarded=0.06 cf	s 0.026 af Primary=17.31 o	cfs 3.123 af Outflow	=17.37 cfs 3.149 af
Link 1L: West Subwatershed		Inflow Primary	/=34.00 cfs 2.094 af /=34.00 cfs 2.094 af
Link 2L: Northwest Subwatershed		Inflow Primary	v=10.07 cfs 0.554 af v=10.07 cfs 0.554 af
Link 3L: North Subwatershed (drainage	swale)	Inflow Primary	/=64.83 cfs 4.148 af /=64.83 cfs 4.148 af
Link 4L: Southeast Subwatershed		Inflow Primary	/=51.96 cfs 6.584 af /=51.96 cfs 6.584 af
Total Punoff Area = 110 960	ac Runoff Volume = 15	301 af Averace P	unoff Depth = 1.64

Total Runoff Area = 110.960 ac	Runoff Volume = 15.301 af	Average Runoff Depth = 1.65"
99	.13% Pervious = 110.000 ac	0.87% Impervious = 0.960 ac

MSE 24-hr 3 100 yr Rainfall=6.18" Printed 6/21/2023 LC Page 61

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

> Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea	Runoff Area=11.870 ac	0.00% Impervious Runoff Depth>3.63"
Flow Length=400'	Slope=0.0200 '/' Tc=11.7 m	hin CN=77 Runoff=61.73 cfs 3.595 af
Subcatchment 2: Subarea	Runoff Area=14.480 ac	0.00% Impervious Runoff Depth>3.74"
Flow Length=630	Slope=0.0200 '/' Tc=13.4 m	hin CN=78 Runoff=73.06 cfs 4.508 af
Subcatchment 3: Subarea	Runoff Area=4.560 ac	0.00% Impervious Runoff Depth>3.33"
Flow Length=630	0' Slope=0.0400 '/' Tc=9.9 m	hin CN=74 Runoff=23.21 cfs 1.267 af
Subcatchment 4: Subarea	Runoff Area=1.100 ac	0.00% Impervious Runoff Depth>3.74"
Flow Length=15	90' Slope=0.0300 '/' Tc=8.6	min CN=78 Runoff=6.62 cfs 0.343 af
Subcatchment 5: Subarea	Runoff Area=28.780 ac	0.00% Impervious Runoff Depth>3.63"
Flow Length=740'	Slope=0.0200 '/' Tc=14.2 mi	n CN=77 Runoff=136.90 cfs 8.715 af
Subcatchment 6: Subarea	Runoff Area=11.230 ac Flow Length=760' Tc=21.5 m	1.87% Impervious Runoff Depth>3.73" hin CN=78 Runoff=45.09 cfs 3.494 af
Subcatchment7: Subarea	Runoff Area=12.830 ac	0.23% Impervious Runoff Depth>3.63"
Flow Length=1,725	Slope=0.0100 '/' Tc=29.4 m	hin CN=77 Runoff=42.19 cfs 3.881 af
Subcatchment 8: Subarea	Runoff Area=26.110 ac	2.76% Impervious Runoff Depth>3.53"
Flow Length=1,580'	Slope=0.0100 '/' Tc=27.9 m	hin CN=76 Runoff=85.99 cfs 7.679 af
Pond 1D: Existing Depression	Peak Elev=939.53' Stora	ge=2.911 af Inflow=61.73 cfs 3.595 af
Discarded=0.49	cfs 0.489 af Primary=0.65 c	fs 0.296 af Outflow=1.14 cfs 0.785 af
Pond 6D: Existing Depression	Peak Elev=918.54' Stora	ge=1.692 af Inflow=45.09 cfs 3.494 af
Discarded=0.23 ct	s 0.080 af Primary=16.64 cf	s 3.261 af Outflow=16.85 cfs 3.340 af
Pond 7D: Existing Depression	Peak Elev=918.52' Stora	ge=0.742 af Inflow=48.15 cfs 7.141 af
Discarded=0.08 cf	s 0.036 af Primary=39.43 cfs	s 7.038 af Outflow=39.52 cfs 7.074 af
Link 1L: West Subwatershed		Inflow=73.06 cfs 4.803 af Primary=73.06 cfs 4.803 af
Link 2L: Northwest Subwatershed		Inflow=23.21 cfs 1.267 af Primary=23.21 cfs 1.267 af
Link 3L: North Subwatershed (drainage	swale)	Inflow=142.66 cfs 9.057 af Primary=142.66 cfs 9.057 af
Link 4L: Southeast Subwatershed		Inflow=119.33 cfs 14.717 af Primary=119.33 cfs 14.717 af
Total Runoff Area = 110.960	ac Runoff Volume = 33.4	81 af Average Runoff Depth = 3.62

Total Runoff Area = 110.960 ac Runoff Volume = 33.481 af Average Runoff Depth = 3.62" 99.13% Pervious = 110.000 ac 0.87% Impervious = 0.960 ac

Summary for Subcatchment 1: Subarea

Page 62

61.73 cfs @ 12.20 hrs, Volume= 3.595 af, Depth> 3.63" Runoff = Routed to Pond 1D : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area	(ac)	CN D	escription			
*	10.	990	78 cr	opland - C s	soils		
*	0.	880	70 w	odland - C	soils		
	11.	870	77 W	eighted Ave	erage		
	11.870 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slop (ft/i	e Velocity t) (ft/sec)	Capacity (cfs)	Description	
	9.5	100	0.020	0.18		Sheet Flow,	
	2.2	300	0.020	0 2.28		Range n= 0.130 P2= 2.70" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps	
	11.7	400	Total				

Subcatchment 1: Subarea

Summary for Subcatchment 2: Subarea

Runoff = 73.06 cfs @ 12.22 hrs, Volume= 4.508 af, Depth> 3.74" Routed to Link 1L : West Subwatershed

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area	(ac)	CN	Desc	ription		
*	13.	900	78	cropl	and - C so	oils	
*	0.	580	70	wood	dland - C s	oils	
	14.	480	78	Weig	hted Aver	age	
	14.480 100.00% Pervious Area					ous Area	
	Tc (min)	Lengtł (feet	n SI) (⁻	ope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	9.5	100	0.0	200	0.18		Sheet Flow,
	3.9	530	0.0	200	2.28		Range n= 0.130 P2= 2.70" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	13.4	630) Tot	al			

Subcatchment 2: Subarea

Summary for Subcatchment 3: Subarea

Page 64

1.267 af, Depth> 3.33" Runoff 23.21 cfs @ 12.18 hrs, Volume= Routed to Link 2L : Northwest Subwatershed

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area	(ac)	CN	Desc	ription			
*	2.	460	78	cropl	and - C so	oils		
*	2.	100	70	wood	lland - C s	oils		
	4.	560	74	Weig	hted Aver	age		_
	4.	560		100.0	00% Pervi	ous Area		
	Tc (min)	Length (feet)	n Slo) (f	ope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	7.2	100) 0.04	400	0.23		Sheet Flow,	
	2.7	530	0.04	400	3.22		Range n= 0.130 P2= 2.70" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps	
	9.9	630) Tota	al				

Subcatchment 3: Subarea

Summary for Subcatchment 4: Subarea

Runoff = 6.62 cfs @ 12.16 hrs, Volume= 0.343 af, Depth> 3.74" Routed to Link 3L : North Subwatershed (drainage swale)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area	(ac) C	N Des	cription			
*	1.	100 7	78 crop	land - C so	oils		
	1.	100	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	8.1	100	0.0300	0.21		Sheet Flow,	
	0.5	90	0.0300	2.79		Range n= 0.130 P2= 2.70" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps	
	8.6	190	Total				

Subcatchment 4: Subarea

Summary for Subcatchment 5: Subarea

Runoff = 136.90 cfs @ 12.23 hrs, Volume= 8.715 af, Depth> 3.63" Routed to Link 3L : North Subwatershed (drainage swale)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

_	Area	(ac)	CN	Desc	ription		
*	25.	850	78	crop	and - C sc	oils	
*	2.	930	70	wood	dland - C s	oils	
	28.	780	77	Weig	ighted Average		
28.780		780		100.	00% Pervi	ous Area	
	Tc (min)	Lengtł (feet	ר ב)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	9.5	100) O.	0200	0.18		Sheet Flow,
	4.7	640) 0.	0200	2.28		Range n= 0.130 P2= 2.70" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	14.2	740) To	otal			

Subcatchment 5: Subarea

Summary for Subcatchment 6: Subarea

Runoff = 45.09 cfs @ 12.32 hrs, Volume= Routed to Pond 6D : Existing Depression 3.494 af, Depth> 3.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area	(ac) (CN	Desc	cription				
*	10.	200	78	crop	land - C so	oils			
*	0.	550	70	wood	dland - C s	oils			
*	0.1	210	98	offsit	e road				
*	0.	270	74	offsit	e lawn (Ro	OW) - C so	ils		
	11.	230	78	Weig	hted Aver	age			
	11.020 98.13% Pervious Area								
	0.	210		1.87	.87% Impervious Area				
					•				
	Тс	Length	1 5	Slope	Velocity	Capacity	Description		
	(min)	(feet))	(ft/ft)	(ft/sec)	(cfs)			
	12.6	100	0.	0100	0.13		Sheet Flow,		
							Range n= 0.130 P2= 2.70"		
	2.0	190	0.	0100	1.61		Shallow Concentrated Flow,		
							Unpaved Kv= 16.1 fps		
	6.9	470	0.	0050	1.14		Shallow Concentrated Flow,		
							Unpaved Kv= 16.1 fps		

21.5 760 Total

Subcatchment 6: Subarea

Summary for Subcatchment 7: Subarea

Runoff = 42.19 cfs @ 12.42 hrs, Volume= 3.881 Routed to Pond 7D : Existing Depression

3.881 af, Depth> 3.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

Area	(ac)	CN	Desc	cription				
11.	180	78	cropl	and - C so	oils			
1.	440	70	wood	dland - C s	oils			
0.	010	74	main	tained law	n - C soils			
0.	030	98	offsit	e road				
0.	170	74	offsit	e lawn (R0	DW) - C soi	ils		
12.	830	77	Weig	hted Aver	age			
12.	800		99.7	7% Pervio	us Area			
0.030			0.23	0.23% Impervious Area				
Тс	Length	ר ו	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
12.6	100	0 (.0100	0.13		Sheet Flow,		
						Range n= 0.130 P2= 2.70"		
16.8	1,625	50	.0100	1.61		Shallow Concentrated Flow,		
						Unpaved Kv= 16.1 fps		
	Area 11. 1. 0. 0. 0. 12. 12. 0. Tc (min) 12.6 16.8	Area (ac) 11.180 1.440 0.010 0.030 0.170 12.830 12.800 0.030 Tc Length (min) (feet 12.6 100 16.8 1,625	Area (ac) CN 11.180 78 1.440 70 0.010 74 0.030 98 0.170 74 12.830 77 12.800 0.030 Tc Length (min) (feet) 12.6 100 0 16.8 1,625 0	Area (ac) CN Desc 11.180 78 cropl 1.440 70 wood 0.010 74 main 0.030 98 offsit 0.170 74 offsit 12.830 77 Weig 12.800 99.7' 0.030 0.030 0.23' Tc Length Slope (min) (feet) (ft/ft) 12.6 100 0.0100 16.8 1,625 0.0100	Area (ac) CN Description 11.180 78 cropland - C sc 1.440 70 woodland - C sc 0.010 74 maintained law 0.030 98 offsite road 0.170 74 offsite lawn (RC 12.830 77 Weighted Aver 12.800 99.77% Pervice 0.030 0.23% Impervice Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 12.6 100 0.0100 0.13 16.8 1,625 0.0100 1.61	Area (ac) CN Description 11.180 78 cropland - C soils 1.440 70 woodland - C soils 0.010 74 maintained lawn - C soils 0.030 98 offsite road 0.170 74 offsite lawn (ROW) - C so 12.830 77 Weighted Average 12.800 99.77% Pervious Area 0.030 0.23% Impervious Area 0.030 0.23% Impervious Area 12.6 100 0.0100 12.6 100 0.100 16.8 1,625 0.0100		

29.4 1,725 Total

Subcatchment 7: Subarea

Summary for Subcatchment 8: Subarea

Runoff = 85.99 cfs @ 12.40 hrs, Volume= Routed to Link 4L : Southeast Subwatershed 7.679 af, Depth> 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

_	Area	(ac)	CN	Desc	cription		
*	16.	470	78	crop	land - C so	oils	
*	4.	800	70	wood	dland - C s	oils	
*	4.	120	74	main	tained law	n - C soils	
*	0.	720	98	impe	rvious		
	26.	110	76	Weig	hted Aver	age	
	25.	390		97.2	, 4% Pervio	us Area	
	0.720 2.76% I			% Impervi	ous Area		
	Тс	Length	5	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	12.6	100	0.	0100	0.13		Sheet Flow,
							Range n= 0.130 P2= 2.70"
	15.3	1,480	0.	0100	1.61		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	07.0	4 500	-				

27.9 1,580 Total

Subcatchment 8: Subarea

Summary for Pond 1D: Existing Depression

Inflow Ar	rea = 11.87	70 ac, 0.0	00% Imperv	vious, Inflow D	epth > 3.63"	for 100 yr	event	
Inflow	= 61.73	cfs @ 12	2.20 hrs, Vo	olume=	3.595 af			
Outflow	= 1.14	cfs @ 16	6.45 hrs, Vo	olume=	0.785 af, Atte	en= 98%, L	₋ag= 255.3 min	
Discarde	ed = 0.49	cfs @ 16	6.45 hrs, Vo	olume=	0.489 af			
Primary Route	= 0.65 ed to Link 1L : W	cfs @ 16 /est Subwa	6.45 hrs, Vo atershed	olume=	0.296 af			
Routing I	by Dyn-Stor-Ind	method, T	ime Span=	0.00-24.00 hrs	s, dt= 0.05 hrs			
Peak Ele	ev= 939.53' @ 1	6.45 hrs	Surf.Area=	3.442 ac Sto	rage= 2.911 af			
Plug-Flov	w detention time	e= 372.3 m	nin calculate	ed for 0.785 af	(22% of inflow)			
Center-o	of-Mass det. time	e= 272.0 m	nin (1,075.4	4 - 803.4)	(
Volume	Invert /	Avail.Stora	ige Stora	ge Description				
#1	938.00'	4.745	af Custo	om Stage Data	(Conic)Listed	below (Red	calc)	
Elovatio		n In	o Storo	Cum Storo	Wat Araa			
	t) (acres	a III) (20	c.Slore	(acre feet)	(acres)			
	(acres)) (ac						
930.0	0 0.440	J 2	0.000	0.000	0.440			
939.0)]	1.330	1.330	2.020			
940.0	4.300	J	3.407	4.745	4.300			
Device	Routing	Invert	Outlet Dev	/ices				
#1	Discarded	938.00'	0.130 in/h	r Exfiltration	over Surface a	rea		
			Conductiv	ity to Groundw	ater Elevation	= 928.00'	Phase-In= 0.01'	
#2	Primary	939.50'	50.0' long	+ 10.0 '/' Side	eZ x 10.0' brea	adth Broac	I-Crested Rectangular We	ir
			Head (fee	t) 0.20 0.40 (0.60 0.80 1.00	1.20 1.40	0 1.60	
			Coef. (Eng	glish) 2.49 2.5	6 2.70 2.69 2	2.68 2.69 2	2.67 2.64	
Disserve			- AC 45 1					
	ed Outriow Ma	1X-0.49 CIS	s @ 10.45 r	IIS HW=939.5	s (Free Disch	arge)		

1=Exfiltration (Controls 0.49 cfs)

Primary OutFlow Max=0.65 cfs @ 16.45 hrs HW=939.53' TW=0.00' (Dynamic Tailwater) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.65 cfs @ 0.43 fps) **8** 30-25 20-15-

> 10 5-0-

2

ż 4 5 6 Ż 8

1

Ó

9

Time (hours)

Pond 1D: Existing Depression

1.14 cfs 0.49 cfs 0.65 cfs

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Summary for Pond 6D: Existing Depression

Inflow Area	a =	11.230 ac,	1.87% Imper	vious, Inflow	Depth >	3.73"	for 10	0 yr event	
Inflow	=	45.09 cfs @	12.32 hrs, V	/olume=	3.494	af		-	
Outflow	=	16.85 cfs @	13.07 hrs, V	/olume=	3.340	af, Atte	en= 63%	6, Lag= 45.0) min
Discarded	=	0.23 cfs @	12.76 hrs, V	/olume=	0.080	af			
Primary	=	16.64 cfs @	13.07 hrs, V	/olume=	3.261	af			
Routed to Pond 7D : Existing Depression									

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 918.54' @ 12.76 hrs Surf.Area= 2.945 ac Storage= 1.692 af

Plug-Flow detention time= 87.8 min calculated for 3.340 af (96% of inflow) Center-of-Mass det. time= 65.6 min (875.9 - 810.3)

Volume	Invert	Avail.Storage	Storage Description	on					
#1	916.90'	3.474 af	Custom Stage Da	ata (Conic) Liste	d below (Re	ecalc)			
Elevatio	on Surf.Ar	ea Inc.S	tore Cum.Store	e Wet.Area					
(fee	et) (acre	es) (acre-f	ieet) (acre-feet) (acres)					
916.9	0.0	0. 00	.000 0.000	0.000 0					
917.0	0.1	10 0.	.004 0.004	4 0.110					
918.0	0 1.2	60 0.	.581 0.584	4 1.260					
919.0	00 4.92	20 2.	.890 3.474	4 4.920					
Device	Routing	Invert O	utlet Devices						
#1	Discarded	916.90' 0. Co	070 in/hr Exfiltratio	n over Surface dwater Elevatior	area n = 911.00'	Phase-In= 0.01'			
#2 Primary		917.40' 8. He Ce	8.0' long + 5.0 '/' SideZ x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64						

Discarded OutFlow Max=0.23 cfs @ 12.76 hrs HW=918.54' (Free Discharge) **1=Exfiltration** (Controls 0.23 cfs)

Primary OutFlow Max=18.05 cfs @ 13.07 hrs HW=918.49' TW=918.39' (Dynamic Tailwater) ←2=Broad-Crested Rectangular Weir (Weir Controls 18.05 cfs @ 1.24 fps) Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Pond 6D: Existing Depression

Summary for Pond 7D: Existing Depression

Inflow Area = 24.060 ac, 1.00% Impervious, Inflow Depth > 3.56" for 100 yr event Inflow 48.15 cfs @ 12.35 hrs, Volume= 7.141 af = 39.52 cfs @ 12.62 hrs, Volume= Outflow = 7.074 af, Atten= 18%, Lag= 15.9 min 0.08 cfs @ 12.62 hrs, Volume= Discarded = 0.036 af Primary = 39.43 cfs @ 12.62 hrs, Volume= 7.038 af Routed to Link 4L : Southeast Subwatershed

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 918.52' @ 12.62 hrs Surf.Area= 1.091 ac Storage= 0.742 af

Plug-Flow detention time= 19.2 min calculated for 7.060 af (99% of inflow) Center-of-Mass det. time= 14.1 min (858.1 - 844.1)

Volume	Invert	Avail.Storage	Storag	e Description					
#1	916.90'	1.386 at	Custo	m Stage Data ((Conic)Listed I	below (Re	calc)		
Elevatio	on Surf.Are	ea Inc.S	Store	Cum.Store	Wet.Area				
(fee	et) (acre	s) (acre-	feet)	(acre-feet)	(acres)				
916.9	0.00	0 0	.000	0.000	0.000				
917.0	0.04	10 O	.001	0.001	0.040				
918.0	0.67	70 O	.291	0.293	0.670				
919.0	00 1.58	30 1	.093	1.386	1.580				
Device	Routing	Invert O	utlet Devi	ices					
#1	Discarded	916.90' 0 C	070 in/hr onductivit	r Exfiltration o v ty to Groundwa	ver Surface ar ter Elevation =	'ea 911.00'	Phase-In= 0.01'		
#2 Primary		917.40' 8 H C	8.0' long + 5.0 '/' SideZ x 10.0' breadth Broad-Crested Rectangular Wein Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64						

Discarded OutFlow Max=0.08 cfs @ 12.62 hrs HW=918.51' (Free Discharge) **1=Exfiltration** (Controls 0.08 cfs)

Primary OutFlow Max=39.35 cfs @ 12.62 hrs HW=918.51' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 39.35 cfs @ 2.60 fps)

Pond 7D: Existing Depression

Summary for Link 1L: West Subwatershed

 Inflow Area =
 26.350 ac,
 0.00% Impervious,
 Inflow Depth >
 2.19"
 for
 100 yr event

 Inflow =
 73.06 cfs @
 12.22 hrs,
 Volume=
 4.803 af

 Primary =
 73.06 cfs @
 12.22 hrs,
 Volume=
 4.803 af,

 Routed to nonexistent node 99L
 99L
 4.803 af,
 Atten= 0%,

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 1L: West Subwatershed
Summary for Link 2L: Northwest Subwatershed

 Inflow Area =
 4.560 ac, 0.00% Impervious, Inflow Depth > 3.33" for 100 yr event

 Inflow =
 23.21 cfs @
 12.18 hrs, Volume=
 1.267 af

 Primary =
 23.21 cfs @
 12.18 hrs, Volume=
 1.267 af, Atten= 0%, Lag= 0.0 min

 Routed to nonexistent node 99L
 0.000
 1.267 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 2L: Northwest Subwatershed

Summary for Link 3L: North Subwatershed (drainage swale)

 Inflow Area =
 29.880 ac,
 0.00% Impervious,
 Inflow Depth >
 3.64"
 for
 100 yr event

 Inflow =
 142.66 cfs @
 12.22 hrs,
 Volume=
 9.057 af

 Primary =
 142.66 cfs @
 12.22 hrs,
 Volume=
 9.057 af,
 Atten= 0%,
 Lag= 0.0 min

 Routed to nonexistent node
 99L
 10.000 min
 10.000 min
 10.000 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 3L: North Subwatershed (drainage swale)

Summary for Link 4L: Southeast Subwatershed

Inflow Area = 50.170 ac, 1.91% Impervious, Inflow Depth > 3.52" for 100 yr event Inflow = 119.33 cfs @ 12.43 hrs, Volume= 14.717 af Primary = 119.33 cfs @ 12.43 hrs, Volume= 14.717 af, Atten= 0%, Lag= 0.0 min Routed to nonexistent node 99L

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 4L: Southeast Subwatershed

Events for Subcatchment 1: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches) (cfs) (acre-		(acre-feet)	(inches)
1 yr	2.40	10.95	0.670	0.68
2 yr	2.70	14.33	0.858	0.87
10 yr	3.81	28.30	1.645	1.66
100 yr	6.18	61.73	3.595	3.63

Events for Subcatchment 2: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches) (cfs) (acre-feet)		(inches)	
1 yr	2.40	13.44	0.872	0.72
2 yr	2.70	17.42	1.110	0.92
10 yr	3.81	34.00	2.094	1.74
100 yr	6.18	73.06	4.508	3.74

Events for Subcatchment 3: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches) (cfs) (acre-feet		(acre-feet)	(inches)
1 yr	2.40	3.51	0.210	0.55
2 yr	2.70	4.76	0.275	0.72
10 yr	3.81	10.07	0.554	1.46
100 yr	6.18	23.21	1.267	3.33

Events for Subcatchment 4: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches) (cfs) (acre-feet)		(inches)	
1 yr	2.40	1.24	0.066	0.72
2 yr	2.70	1.61	0.084	0.92
10 yr	3.81	3.10	0.159	1.74
100 yr	6.18	6.62	0.343	3.74

Events for Subcatchment 5: Subarea

Event	Rainfall	fall Runoff Volume		Depth
	(inches) (cfs) (acre-feet)		(acre-feet)	(inches)
1 yr	2.40	24.09	1.625	0.68
2 yr	2.70	31.58	2.081	0.87
10 yr	3.81	62.53	3.989	1.66
100 yr	6.18	136.90	8.715	3.63

Events for Subcatchment 6: Subarea

Event	Rainfall	Runoff	Runoff Volume	
	(inches) (cfs) (ad		(acre-feet)	(inches)
1 yr	2.40	8.19	0.676	0.72
2 yr	2.70	10.65	0.860	0.92
10 yr	3.81	20.84	1.623	1.73
100 yr	6.18	45.09	3.494	3.73

Events for Subcatchment 7: Subarea

Event	Rainfall	Runoff	Runoff Volume	
	(inches) (cfs) (a		(acre-feet)	(inches)
1 yr	2.40	7.24	0.723	0.68
2 yr	2.70	9.53	0.926	0.87
10 yr	3.81	19.06	1.776	1.66
100 yr	6.18	42.19	3.881	3.63

Events for Subcatchment 8: Subarea

Event	Rainfall	Runoff	Runoff Volume	
	(inches) (cfs) (acre-feet)		(inches)	
1 yr	2.40	13.97	1.377	0.63
2 yr	2.70	18.61	1.777	0.82
10 yr	3.81	38.15	3.461	1.59
100 yr	6.18	85.99	7.679	3.53

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Volume (acre-feet)	Elevation (feet)	Storage (acre-feet)
1 yr	10.95	0.19	0.19	0.00	0.000	938.58	0.510
2 yr	14.33	0.23	0.23	0.00	0.000	938.68	0.669
10 yr	28.30	0.35	0.35	0.00	0.000	939.00	1.346
100 yr	61.73	1.14	0.49	0.65	0.296	939.53	2.911

45.09

16.85

100 yr

1.692

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Volume (acre-feet)	Elevation (feet)	Storage (acre-feet)	
1 yr	8.19	2.22	0.07	2.16	0.512	917.77	0.339	
2 yr	10.65	3.17	0.08	3.09	0.690	917.86	0.423	
10 yr	20.84	7.27	0.12	7.15	1.433	918.13	0.766	

16.64

3.261

918.54

0.23

Events for Pond 6D: Existing Depression

		·					
Event	Inflow	Outflow	Discarded	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	7.24	5.17	0.03	5.13	1.161	917.76	0.158
2 yr	9.53	7.53	0.04	7.49	1.540	917.84	0.200
10 yr	21.36	17.37	0.06	17.31	3.123	918.11	0.368
100 yr	48.15	39.52	0.08	39.43	7.038	918.52	0.742

Events for Pond 7D: Existing Depression

Events for Link 1L: West Subwatershed

Event	Inflow	Primary	Volume
	(cfs)	(cfs)	(acre-feet)
1 yr	13.44	13.44	0.872
2 yr	17.42	17.42	1.110
10 yr	34.00	34.00	2.094
100 yr	73.06	73.06	4.803

Events for Link 2L: Northwest Subwatershed

Event	Inflow	Primary	Volume
	(cfs)	(cfs)	(acre-feet)
1 yr	3.51	3.51	0.210
2 yr	4.76	4.76	0.275
10 yr	10.07	10.07	0.554
100 yr	23.21	23.21	1.267

Events for Link 3L: North Subwatershed (drainage swale)

Event	Inflow	Primary	Volume
	(cfs)	(cfs)	(acre-feet)
1 yr	24.99	24.99	1.691
2 yr	32.75	32.75	2.165
10 yr	64.83	64.83	4.148
100 yr	142.66	142.66	9.057

Events for Link 4L: Southeast Subwatershed

Event	Inflow	Primary	Volume
	(cfs)	(cfs)	(acre-feet)
1 yr	17.42	17.42	2.539
2 yr	23.83	23.83	3.316
10 yr	51.96	51.96	6.584
100 yr	119.33	119.33	14.717

APPENDIX B Pre-Development Hydrologic Analysis

Even	t#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
		Name				(hours)		(inches)	
	1	1 yr	MSE 24-hr	3	Default	24.00	1	2.40	2
	2	2 yr	MSE 24-hr	3	Default	24.00	1	2.70	2
	3	10 yr	MSE 24-hr	3	Default	24.00	1	3.81	2
	4	100 yr	MSE 24-hr	3	Default	24.00	1	6.18	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
29.140	98	impervious (1, 2, 3, 4, 5, 6, 7a, 7b, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)
71.590	74	lawn - C (1, 2, 3, 4, 5, 6, 7a, 7b, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)
0.440	74	offsite lawn (ROW) - C (16)
0.240	98	offsite road (16)
2.500	98	water or effective infiltration area (1, 2, 3, 4, 5, 6, 7a, 7b, 8, 9, 10, 11, 12, 13)
7.050	70	woods - C (1, 3, 6, 7a, 7b, 8, 10, 12, 14, 16)
110.960	81	TOTAL AREA

HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: Subarea	Runoff Area=11.050 ac 30.86% Impervious Runoff Depth>0.87" Tc=10.0 min CN=81 Runoff=14.43 cfs 0.802 af
Subcatchment 2: Subarea	Runoff Area=1.620 ac 48.15% Impervious Runoff Depth>1.16" Tc=6.0 min CN=86 Runoff=3.38 cfs 0.157 af
Subcatchment 3: Subarea	Runoff Area=13.360 ac 44.31% Impervious Runoff Depth>1.10" Tc=15.0 min CN=85 Runoff=18.90 cfs 1.223 af
Subcatchment4: Subarea	Runoff Area=4.390 ac 17.31% Impervious Runoff Depth>0.72" Tc=10.0 min CN=78 Runoff=4.65 cfs 0.265 af
Subcatchment 5: Subarea	Runoff Area=2.590 ac 12.36% Impervious Runoff Depth>0.68" Tc=10.0 min CN=77 Runoff=2.54 cfs 0.146 af
Subcatchment 6: Subarea	Runoff Area=8.800 ac 35.68% Impervious Runoff Depth>0.92" Tc=10.0 min CN=82 Runoff=12.26 cfs 0.678 af
Subcatchment7a: Subarea	Runoff Area=6.380 ac 16.61% Impervious Runoff Depth>0.72" Tc=10.0 min CN=78 Runoff=6.76 cfs 0.385 af
Subcatchment7b: Subarea	Runoff Area=5.220 ac 38.89% Impervious Runoff Depth>0.98" Tc=10.0 min CN=83 Runoff=7.74 cfs 0.426 af
Subcatchment 8: Subarea	Runoff Area=4.610 ac 19.09% Impervious Runoff Depth>0.72" Tc=10.0 min CN=78 Runoff=4.88 cfs 0.278 af
Subcatchment9: Subarea	Runoff Area=10.820 ac 36.23% Impervious Runoff Depth>0.98" Tc=6.0 min CN=83 Runoff=19.06 cfs 0.884 af
Subcatchment10: Subarea	Runoff Area=2.040 ac 18.63% Impervious Runoff Depth>0.72" Tc=10.0 min CN=78 Runoff=2.16 cfs 0.123 af
Subcatchment 11: Subarea	Runoff Area=7.980 ac 39.47% Impervious Runoff Depth>0.98" Tc=6.0 min CN=83 Runoff=14.06 cfs 0.652 af
Subcatchment 12: Subarea	Runoff Area=7.030 ac 28.59% Impervious Runoff Depth>0.82" Tc=10.0 min CN=80 Runoff=8.59 cfs 0.480 af
Subcatchment 13: Subarea	Runoff Area=5.250 ac 24.38% Impervious Runoff Depth>0.82" Tc=10.0 min CN=80 Runoff=6.41 cfs 0.359 af
Subcatchment 14: Subarea	Runoff Area=0.410 ac 7.32% Impervious Runoff Depth>0.59" Tc=10.0 min CN=75 Runoff=0.34 cfs 0.020 af
Subcatchment 15: Subarea	Runoff Area=4.280 ac 17.06% Impervious Runoff Depth>0.72" Tc=10.0 min CN=78 Runoff=4.53 cfs 0.258 af

Proposed_2023-003 Prepared by HP Inc.				MS	E 24-ł	n <mark>r 3 1 yr F</mark> Prin	R <i>ainfa</i> ted 6	all=2.40" /21/2023
HydroCAD® 10.10-6a s/n 11	025 © 2020 HydroC	AD Softwa	are Solution	is LLC				Page 5
Subcatchment 16: Subare	a I	Runoff Are	ea=11.570 a Tc=10	ac 12.27% 0.0 min C	lmper N=76	vious Run Runoff=10.	off De∣ 50 cfs	pth>0.63" 0.612 af
Subcatchment 17: Subare	a	Runoff A	rea=3.560 a Tc=	ac 18.54% 10.0 min (Imper CN=78	vious Run Runoff=3.	off De 77 cfs	pth>0.72" 0.215 af
Pond 1B: Basin	Discarded=0.11 cfs	Peak Ele [,] 0.093 af	v=934.48' \$ Primary=0	Storage=0.4 .87 cfs 0.4	474 af 52 af	Inflow=14. Outflow=0.	43 cfs 98 cfs	0.802 af 0.545 af
Pond 2B: Basin	Discarded=0.37 cfs	Peak El 0.348 af	ev=931.39' Primary=0	Storage=0 .59 cfs 0.1).119 a [.] 87 af	f Inflow=3. Outflow=0.	38 cfs 96 cfs	0.609 af 0.536 af
Pond 3P: Pond		Peak Ele [,]	v=925.48' \$	Storage=0.	908 af	Inflow=18 Outflow=0	90 cfs 43 cfs	1.223 af 0.418 af
Pond 4B: Basin	Discarded=1.05 cfs	Peak El 0.265 af	ev=936.14' Primary=0	Storage=0 .00 cfs 0.0).080 a [.])00 af	f Inflow=4. Outflow=1.	65 cfs 05 cfs	0.265 af 0.265 af
Pond 5RG: Rain Garden	Discarded=0.01 cfs	Peak El 0.005 af	ev=923.51' Primary=0	Storage=0 .19 cfs 0.0).080 a [.])99 af	f Inflow=2. Outflow=0.	54 cfs 19 cfs	0.146 af 0.105 af
Pond 6P: Pond		Peak Ele	v=912.56' \$	Storage=0.	513 af	Inflow=12. Outflow=0	26 cfs 37 cfs	0.777 af 0.352 af
Pond 7P: Pond		Peak El	ev=920.11'	Storage=0).361 a	f Inflow=8. Outflow=1.	67 cfs 16 cfs	0.717 af 0.620 af
Pond 7RG: Rain Garden	Discarded=0.02 cfs	Peak El 0.014 af	ev=922.35' Primary=3	Storage=0 .77 cfs 0.2).112 a [.] 91 af	f Inflow=6. Outflow=3.	76 cfs 79 cfs	0.385 af 0.305 af
Pond 8B: Basin	Discarded=0.01 cfs	Peak El 0.009 af	ev=917.29' Primary=0	Storage=0 .15 cfs 0.1).187 a [:] 27 af	f Inflow=4. Outflow=0.	88 cfs 16 cfs	0.278 af 0.136 af
Pond 9P: Pond		Peak Ele	v=899.66' \$	Storage=0.	750 af	Inflow=19. Outflow=0.	06 cfs 29 cfs	1.012 af 0.279 af
Pond 10B: Basin	Discarded=0.09 cfs	Peak El 0.086 af	ev=911.88' Primary=0	Storage=0 .00 cfs 0.0).073 a [.])00 af	f Inflow=2. Outflow=0.	16 cfs 09 cfs	0.123 af 0.086 af
Pond 11P: Pond		Peak Ele	v=914.08' \$	Storage=0.4	450 af	Inflow=14. Outflow=0	06 cfs 39 cfs	0.652 af 0.310 af
Pond 12P: Pond		Peak El	ev=923.89'	Storage=0).309 a	f Inflow=8. Outflow=0.	59 cfs 31 cfs	0.480 af 0.289 af
Pond 13P: Pond		Peak El	ev=896.37'	Storage=0).206 a	f Inflow=6. Outflow=0.	41 cfs 40 cfs	0.359 af 0.303 af
Link 1L: West Subwaters	ned					Inflow=4 Primary=4	01 cfs 01 cfs	0.632 af 0.632 af
Link 2L: Northwest Subwa	atershed					Inflow=0 Primary=0	58 cfs 58 cfs	0.323 af 0.323 af

Page 6

Link 4L: Southeast Subwatershed

Inflow=10.98 cfs 1.584 af Primary=10.98 cfs 1.584 af

Total Runoff Area = 110.960 ac Runoff Volume = 7.962 af Average Runoff Depth = 0.86" 71.27% Pervious = 79.080 ac 28.73% Impervious = 31.880 ac

HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: Subarea	Runoff Area=11.050 ac 30.86% Impervious Runoff Depth>1.09" Tc=10.0 min CN=81 Runoff=18.14 cfs 1.001 af
Subcatchment2: Subarea	Runoff Area=1.620 ac 48.15% Impervious Runoff Depth>1.41" Tc=6.0 min CN=86 Runoff=4.08 cfs 0.190 af
Subcatchment3: Subarea	Runoff Area=13.360 ac 44.31% Impervious Runoff Depth>1.34" Tc=15.0 min CN=85 Runoff=23.09 cfs 1.490 af
Subcatchment4: Subarea	Runoff Area=4.390 ac 17.31% Impervious Runoff Depth>0.92" Tc=10.0 min CN=78 Runoff=6.01 cfs 0.336 af
Subcatchment 5: Subarea	Runoff Area=2.590 ac 12.36% Impervious Runoff Depth>0.87" Tc=10.0 min CN=77 Runoff=3.32 cfs 0.187 af
Subcatchment 6: Subarea	Runoff Area=8.800 ac 35.68% Impervious Runoff Depth>1.15" Tc=10.0 min CN=82 Runoff=15.29 cfs 0.841 af
Subcatchment7a: Subarea	Runoff Area=6.380 ac 16.61% Impervious Runoff Depth>0.92" Tc=10.0 min CN=78 Runoff=8.74 cfs 0.489 af
Subcatchment7b: Subarea	Runoff Area=5.220 ac 38.89% Impervious Runoff Depth>1.21" Tc=10.0 min CN=83 Runoff=9.57 cfs 0.526 af
Subcatchment8: Subarea	Runoff Area=4.610 ac 19.09% Impervious Runoff Depth>0.92" Tc=10.0 min CN=78 Runoff=6.31 cfs 0.353 af
Subcatchment9: Subarea	Runoff Area=10.820 ac 36.23% Impervious Runoff Depth>1.21" Tc=6.0 min CN=83 Runoff=23.51 cfs 1.090 af
Subcatchment 10: Subarea	Runoff Area=2.040 ac 18.63% Impervious Runoff Depth>0.92" Tc=10.0 min CN=78 Runoff=2.79 cfs 0.156 af
Subcatchment 11: Subarea	Runoff Area=7.980 ac 39.47% Impervious Runoff Depth>1.21" Tc=6.0 min CN=83 Runoff=17.34 cfs 0.804 af
Subcatchment 12: Subarea	Runoff Area=7.030 ac 28.59% Impervious Runoff Depth>1.03" Tc=10.0 min CN=80 Runoff=10.89 cfs 0.603 af
Subcatchment 13: Subarea	Runoff Area=5.250 ac 24.38% Impervious Runoff Depth>1.03" Tc=10.0 min CN=80 Runoff=8.13 cfs 0.450 af
Subcatchment 14: Subarea	Runoff Area=0.410 ac 7.32% Impervious Runoff Depth>0.77" Tc=10.0 min CN=75 Runoff=0.46 cfs 0.026 af
Subcatchment 15: Subarea	Runoff Area=4.280 ac 17.06% Impervious Runoff Depth>0.92" Tc=10.0 min CN=78 Runoff=5.86 cfs 0.328 af

Proposed_2023-003 Prepared by HP Inc.				MSE 24-ł	hr 3 2 yr Rail Printed	n fall=2 .70" 6/21/2023
HydroCAD® 10.10-6a s/n 11	025 © 2020 HydroC	AD Softwa	are Solutions LL	<u>_C</u>		Page 58
Subcatchment 16: Subare	a I	Runoff Are	a=11.570 ac Tc=10.0 i	12.27% Imper min CN=76	vious Runoff l Runoff=13.88	Depth>0.82" cfs_0.789 af
Subcatchment 17: Subare	a	Runoff Aı	rea=3.560 ac Tc=10.0	18.54% Imper min CN=78	vious Runoff l Runoff=4.88	Depth>0.92" cfs_0.273 af
Pond 1B: Basin	Discarded=0.12 cfs	Peak Elev 0.100 af	v=934.78' Stora Primary=1.16	age=0.586 af cfs_0.621 af	Inflow=18.14 Outflow=1.28	cfs 1.001 af cfs 0.721 af
Pond 2B: Basin	Discarded=0.38 cfs	Peak Ele 0.363 af	ev=931.52' Sto Primary=0.97	rage=0.132 a cfs_0.368 af	f Inflow=4.06 Outflow=1.35	cfs 0.811 af cfs 0.731 af
Pond 3P: Pond		Peak Elev	v=925.63' Stora	age=0.959 af	Inflow=23.09 Outflow=2.33	cfs 1.490 af cfs 0.656 af
Pond 4B: Basin	Discarded=1.13 cfs	Peak Ele 0.336 af	ev=936.32' Sto Primary=0.00	rage=0.115 a cfs_0.000 af	f Inflow=6.01 Outflow=1.13	cfs 0.336 af cfs 0.336 af
Pond 5RG: Rain Garden	Discarded=0.01 cfs	Peak Ele 0.006 af	ev=923.86' Sto Primary=0.23	rage=0.104 a cfs_0.139 af	f Inflow=3.32 Outflow=0.24	cfs 0.187 af cfs 0.145 af
Pond 6P: Pond		Peak Elev	v=912.69' Stora	age=0.547 af	Inflow=15.30 Outflow=1.44	cfs 0.980 af cfs 0.518 af
Pond 7P: Pond		Peak Elev	v=920.33' Stora	age=0.475 af	Inflow=13.64 Outflow=1.56	cfs 0.920 af cfs 0.812 af
Pond 7RG: Rain Garden	Discarded=0.02 cfs	Peak Ele 0.015 af	ev=922.45' Sto Primary=6.19	rage=0.125 a cfs_0.395 af	f Inflow=8.74 Outflow=6.20	cfs 0.489 af cfs 0.409 af
Pond 8B: Basin	Discarded=0.01 cfs	Peak Ele 0.009 af	ev=917.56' Sto Primary=0.20	rage=0.238 a cfs_0.170 af	f Inflow=6.31 Outflow=0.20	cfs 0.353 af cfs 0.179 af
Pond 9P: Pond		Peak Elev	v=900.07' Stora	age=0.953 af	Inflow=23.51 Outflow=0.35	cfs 1.260 af cfs 0.321 af
Pond 10B: Basin	Discarded=0.10 cfs	Peak Ele 0.095 af	ev=912.16' Sto Primary=0.00	rage=0.099 a cfs_0.000 af	f Inflow=2.79 Outflow=0.10	cfs 0.156 af cfs 0.095 af
Pond 11P: Pond		Peak Elev	v=914.31' Stora	age=0.517 af	Inflow=17.34 Outflow=0.85	cfs 0.804 af cfs 0.439 af
Pond 12P: Pond		Peak Elev	v=924.24' Stora	age=0.385 af	Inflow=10.89 Outflow=0.60	cfs 0.603 af cfs 0.346 af
Pond 13P: Pond		Peak Ele	ev=896.65' Sto	rage=0.268 a	f Inflow=8.13 Outflow=0.46	cfs 0.450 af cfs 0.367 af
Link 1L: West Subwaters	ned				Inflow=5.15 Primary=5.15	cfs 0.929 af cfs 0.929 af
Link 2L: Northwest Subwa	atershed				Inflow=0.75 Primary=0.75	cfs 0.393 af cfs 0.393 af

Link 3L: North Subwatershed (drainage swale)

Inflow=6.56 cfs 1.802 af Primary=6.56 cfs 1.802 af

Link 4L: Southeast Subwatershed

Inflow=14.56 cfs 2.119 af Primary=14.56 cfs 2.119 af

Total Runoff Area = 110.960 ac Runoff Volume = 9.933 af Average Runoff Depth = 1.07" 71.27% Pervious = 79.080 ac 28.73% Impervious = 31.880 ac Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: Subarea	Runoff Area=11.050 ac 30.86% Impervious Runoff Depth>1.96" Tc=10.0 min CN=81 Runoff=32.93 cfs 1.806 af
Subcatchment2: Subarea	Runoff Area=1.620 ac 48.15% Impervious Runoff Depth>2.37" Tc=6.0 min CN=86 Runoff=6.77 cfs 0.321 af
Subcatchment 3: Subarea	Runoff Area=13.360 ac 44.31% Impervious Runoff Depth>2.29" Tc=15.0 min CN=85 Runoff=39.32 cfs 2.546 af
Subcatchment4: Subarea	Runoff Area=4.390 ac 17.31% Impervious Runoff Depth>1.74" Tc=10.0 min CN=78 Runoff=11.57 cfs 0.635 af
Subcatchment 5: Subarea	Runoff Area=2.590 ac 12.36% Impervious Runoff Depth>1.66" Tc=10.0 min CN=77 Runoff=6.54 cfs 0.359 af
Subcatchment 6: Subarea	Runoff Area=8.800 ac 35.68% Impervious Runoff Depth>2.04" Tc=10.0 min CN=82 Runoff=27.25 cfs 1.496 af
Subcatchment7a: Subarea	Runoff Area=6.380 ac 16.61% Impervious Runoff Depth>1.74" Tc=10.0 min CN=78 Runoff=16.82 cfs 0.923 af
Subcatchment7b: Subarea	Runoff Area=5.220 ac 38.89% Impervious Runoff Depth>2.12" Tc=10.0 min CN=83 Runoff=16.77 cfs 0.923 af
Subcatchment 8: Subarea	Runoff Area=4.610 ac 19.09% Impervious Runoff Depth>1.74" Tc=10.0 min CN=78 Runoff=12.15 cfs 0.667 af
Subcatchment9: Subarea	Runoff Area=10.820 ac 36.23% Impervious Runoff Depth>2.12" Tc=6.0 min CN=83 Runoff=40.89 cfs 1.913 af
Subcatchment10: Subarea	Runoff Area=2.040 ac 18.63% Impervious Runoff Depth>1.74" Tc=10.0 min CN=78 Runoff=5.38 cfs 0.295 af
Subcatchment 11: Subarea	Runoff Area=7.980 ac 39.47% Impervious Runoff Depth>2.12" Tc=6.0 min CN=83 Runoff=30.16 cfs 1.411 af
Subcatchment 12: Subarea	Runoff Area=7.030 ac 28.59% Impervious Runoff Depth>1.88" Tc=10.0 min CN=80 Runoff=20.14 cfs 1.104 af
Subcatchment13: Subarea	Runoff Area=5.250 ac 24.38% Impervious Runoff Depth>1.88" Tc=10.0 min CN=80 Runoff=15.04 cfs 0.825 af
Subcatchment14: Subarea	Runoff Area=0.410 ac 7.32% Impervious Runoff Depth>1.52" Tc=10.0 min CN=75 Runoff=0.94 cfs 0.052 af
Subcatchment 15: Subarea	Runoff Area=4.280 ac 17.06% Impervious Runoff Depth>1.74" Tc=10.0 min CN=78 Runoff=11.28 cfs 0.619 af

Proposed_2023-003				MS	E 24-hr	· 3 10 yr Ra	ainfa	ll=3.81"
HydroCAD® 10.10-6a s/n 11	025 © 2020 HvdroC	AD Softwa	are Solutio	ns LLC		Printe	a o/ P	21/2023 ade 111
Subcatchment 16: Subare	a i	Runoff Are	a=11.570 Tc=′	ac 12.27 10.0 min	% Imper CN=76	vious Runof Runoff=27.9	f Dep 1 cfs	oth>1.59" 1.536 af
Subcatchment 17: Subare	a	Runoff Ar	rea=3.560 Tc=	ac 18.54 =10.0 min	% Imper CN=78	vious Runof Runoff=9.3	f Dep 8 cfs	oth>1.74" 0.515 af
Pond 1B: Basin	Discarded=0.16 cfs	Peak Elev 0.134 af	v=935.84' Primary=	Storage= 1.84 cfs 1	1.119 af .301 af	Inflow=32.9 Outflow=2.0	3 cfs) cfs	1.806 af 1.436 af
Pond 2B: Basin	Discarded=0.42 cfs	Peak Ele 0.406 af	ev=931.84 Primary=	' Storage 2.09 cfs 1	=0.167 a .115 af	f Inflow=7.4 Outflow=2.5	7 cfs 1 cfs	1.622 af 1.521 af
Pond 3P: Pond		Peak Elev	/= 926.10'	Storage=	1.127 af (Inflow=39.3 Outflow=19.7	2 cfs 8 cfs	2.546 af 1.669 af
Pond 4B: Basin	Discarded=1.51 cfs	Peak Elev 0.635 af	/=937.08' Primary=	Storage=0 0.00 cfs 0	0.271 af 0.000 af	Inflow=11.5 Outflow=1.5	7 cfs 1 cfs	0.635 af 0.635 af
Pond 5RG: Rain Garden	Discarded=0.01 cfs	Peak Ele 0.007 af	ev=924.42 Primary=	' Storage 2.53 cfs 0	=0.153 a 9.302 af	f Inflow=6.5 Outflow=2.54	4 cfs 4 cfs	0.359 af 0.310 af
Pond 6P: Pond		Peak Elev	/=913.06'	Storage=0	0.650 af (Inflow=27.4 Outflow=13.2	6 cfs 9 cfs	1.798 af 1.293 af
Pond 7P: Pond		Peak Elev	/=921.04'	Storage=0	0.890 af	Inflow=31.4 Outflow=4.0	6 cfs 8 cfs	1.750 af 1.604 af
Pond 7RG: Rain Garden	iscarded=0.02 cfs 0.	Peak Elev 016 af P	/=922.71' rimary=15	Storage=0 .43 cfs 0.8	0.160 af 327 af (Inflow=16.8 Dutflow=15.4	2 cfs 5 cfs	0.923 af 0.842 af
Pond 8B: Basin	Discarded=0.01 cfs	Peak Elev 0.012 af	/=918.66' Primary=	Storage=0 0.32 cfs 0	0.474 af 0.292 af	Inflow=12.1 Outflow=0.3	5 cfs 3 cfs	0.667 af 0.304 af
Pond 9P: Pond		Peak Elev	/=900.73'	Storage=	1.303 af	Inflow=40.9 Outflow=2.1	9 cfs 6 cfs	2.205 af 1.164 af
Pond 10B: Basin	Discarded=0.12 cfs	Peak Ele 0.123 af	ev=912.89 Primary=	' Storage 0.00 cfs 0	=0.208 a 0.000 af	f Inflow=5.3 Outflow=0.12	8 cfs 2 cfs	0.295 af 0.123 af
Pond 11P: Pond		Peak Elev	/=915.09'	Storage=0	0.778 af	Inflow=30.1 Outflow=3.3	6 cfs 1 cfs	1.411 af 1.008 af
Pond 12P: Pond		Peak Elev	/=924.59'	Storage=0	0.470 af	Inflow=20.1 Outflow=8.0	4 cfs 1 cfs	1.104 af 0.797 af
Pond 13P: Pond		Peak Elev	/=897.60'	Storage=0	0.501 af	Inflow=15.0 Outflow=1.1	4 cfs 1 cfs	0.825 af 0.609 af
Link 1L: West Subwaters	hed				F	Inflow=22.8 Primary=22.8	0 cfs 0 cfs	2.184 af 2.184 af
Link 2L: Northwest Subw	atershed					Inflow=1.3 Primary=1.3	8 cfs 8 cfs	0.661 af 0.661 af

Link 3L: North Subwatershed (drainage swale)

Inflow=18.21 cfs 4.703 af Primary=18.21 cfs 4.703 af

Link 4L: Southeast Subwatershed

Inflow=30.27 cfs 4.432 af Primary=30.27 cfs 4.432 af

Total Runoff Area = 110.960 ac Runoff Volume = 17.945 af Average Runoff Depth = 1.94" 71.27% Pervious = 79.080 ac 28.73% Impervious = 31.880 ac HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: Subarea	Runoff Area=11.050 ac 30.86% Impervious Runoff Depth>4.05" Tc=10.0 min CN=81 Runoff=66.94 cfs 3.726 af
Subcatchment 2: Subarea	Runoff Area=1.620 ac 48.15% Impervious Runoff Depth>4.58" Tc=6.0 min CN=86 Runoff=12.61 cfs 0.618 af
Subcatchment 3: Subarea	Runoff Area=13.360 ac 44.31% Impervious Runoff Depth>4.47" Tc=15.0 min CN=85 Runoff=75.17 cfs 4.976 af
Subcatchment4: Subarea	Runoff Area=4.390 ac 17.31% Impervious Runoff Depth>3.74" Tc=10.0 min CN=78 Runoff=24.71 cfs 1.367 af
Subcatchment 5: Subarea	Runoff Area=2.590 ac 12.36% Impervious Runoff Depth>3.63" Tc=10.0 min CN=77 Runoff=14.21 cfs 0.785 af
Subcatchment 6: Subarea	Runoff Area=8.800 ac 35.68% Impervious Runoff Depth>4.15" Tc=10.0 min CN=82 Runoff=54.50 cfs 3.044 af
Subcatchment7a: Subarea	Runoff Area=6.380 ac 16.61% Impervious Runoff Depth>3.74" Tc=10.0 min CN=78 Runoff=35.91 cfs 1.987 af
Subcatchment7b: Subarea	Runoff Area=5.220 ac 38.89% Impervious Runoff Depth>4.26" Tc=10.0 min CN=83 Runoff=33.02 cfs 1.852 af
Subcatchment8: Subarea	Runoff Area=4.610 ac 19.09% Impervious Runoff Depth>3.74" Tc=10.0 min CN=78 Runoff=25.95 cfs 1.435 af
Subcatchment9: Subarea	Runoff Area=10.820 ac 36.23% Impervious Runoff Depth>4.26" Tc=6.0 min CN=83 Runoff=79.67 cfs 3.839 af
Subcatchment10: Subarea	Runoff Area=2.040 ac 18.63% Impervious Runoff Depth>3.74" Tc=10.0 min CN=78 Runoff=11.48 cfs 0.635 af
Subcatchment11: Subarea	Runoff Area=7.980 ac 39.47% Impervious Runoff Depth>4.26" Tc=6.0 min CN=83 Runoff=58.76 cfs 2.831 af
Subcatchment 12: Subarea	Runoff Area=7.030 ac 28.59% Impervious Runoff Depth>3.94" Tc=10.0 min CN=80 Runoff=41.52 cfs 2.309 af
Subcatchment13: Subarea	Runoff Area=5.250 ac 24.38% Impervious Runoff Depth>3.94" Tc=10.0 min CN=80 Runoff=31.01 cfs 1.725 af
Subcatchment14: Subarea	Runoff Area=0.410 ac 7.32% Impervious Runoff Depth>3.43" Tc=10.0 min CN=75 Runoff=2.13 cfs 0.117 af
Subcatchment 15: Subarea	Runoff Area=4.280 ac 17.06% Impervious Runoff Depth>3.74" Tc=10.0 min CN=78 Runoff=24.09 cfs 1.333 af

Proposed_2023-003	MSE 24-hr 3 100 yr Rainfall=6.18" Printed 6/21/2023
HvdroCAD® 10.10-6a s/n 11025 © 2020 Hv	/droCAD Software Solutions LLC Page 164
Subcatchment 16: Subarea	Runoff Area=11.570 ac 12.27% Impervious Runoff Depth>3.53"
Subcatchment 17: Subarea	Runoff Area=3.560 ac 18.54% Impervious Runoff Depth>3.74" Tc=10.0 min CN=78 Runoff=20.04 cfs 1.108 af
Pond 1B: Basin Discarded=0.2	Peak Elev=937.46' Storage=2.350 af Inflow=66.94 cfs 3.726 af 24 cfs 0.216 af Primarv=5.42 cfs 2.524 af Outflow=5.66 cfs 2.740 af
Pond 2B: Basin Discarded=0.49	Peak Elev=932.38' Storage=0.234 af Inflow=14.38 cfs 3.142 af cfs 0.468 af Primary=10.14 cfs 2.529 af Outflow=10.63 cfs 2.997 af
Pond 3P: Pond	Peak Elev=927.84' Storage=1.822 af Inflow=75.32 cfs 5.050 af Outflow=36.55 cfs 4.142 af
Pond 4B: Basin Discarded=2.6	Peak Elev=938.54' Storage=0.661 af Inflow=24.71 cfs 1.367 af 0 cfs 1.293 af Primary=0.39 cfs 0.074 af Outflow=2.99 cfs 1.367 af
Pond 5RG: Rain Garden Discarded=0.01	Peak Elev=924.80' Storage=0.194 af Inflow=14.21 cfs 0.785 af cfs 0.009 af Primary=13.05 cfs 0.704 af Outflow=13.06 cfs 0.713 af
Pond 6P: Pond	Peak Elev=914.99' Storage=1.310 af Inflow=66.31 cfs 3.748 af Outflow=25.56 cfs 3.223 af
Pond 7P: Pond	Peak Elev=922.28' Storage=1.829 af Inflow=66.09 cfs 3.739 af Outflow=12.97 cfs 3.520 af
Pond 7RG: Rain Garden Discarded=0.02	Peak Elev=923.08' Storage=0.218 af Inflow=35.91 cfs 1.987 af cfs 0.018 af Primary=34.12 cfs 1.887 af Outflow=34.14 cfs 1.905 af
Pond 8B: Basin Discarded=0.0	Peak Elev=919.45' Storage=0.683 af Inflow=25.95 cfs 1.435 af 2 cfs 0.015 af Primary=9.74 cfs 0.926 af Outflow=9.76 cfs 0.940 af
Pond 9P: Pond	Peak Elev=902.93' Storage=2.697 af Inflow=79.95 cfs 4.765 af Outflow=8.76 cfs 3.663 af
Pond 10B: Basin Discarded=0.1	Peak Elev=914.16' Storage=0.449 af Inflow=11.48 cfs 0.635 af 7 cfs 0.173 af Primary=0.17 cfs 0.123 af Outflow=0.34 cfs 0.296 af
Pond 11P: Pond	Peak Elev=916.48' Storage=1.332 af Inflow=58.76 cfs 2.831 af Outflow=15.76 cfs 2.395 af
Pond 12P: Pond	Peak Elev=926.00' Storage=0.892 af Inflow=41.52 cfs 2.309 af Outflow=14.97 cfs 1.959 af
Pond 13P: Pond	Peak Elev=898.69' Storage=0.824 af Inflow=31.01 cfs 1.725 af Outflow=9.41 cfs 1.425 af
Link 1L: West Subwatershed	Inflow=52.33 cfs 5.250 af Primary=52.33 cfs 5.250 af
Link 2L: Northwest Subwatershed	Inflow=10.36 cfs 1.543 af Primary=10.36 cfs 1.543 af

Link 3L: North Subwatershed (drainage swale)

Inflow=67.12 cfs 12.002 af Primary=67.12 cfs 12.002 af

Link 4L: Southeast Subwatershed

Inflow=89.93 cfs 10.150 af Primary=89.93 cfs 10.150 af

Total Runoff Area = 110.960 ac Runoff Volume = 37.094 af Average Runoff Depth = 4.01" 71.27% Pervious = 79.080 ac 28.73% Impervious = 31.880 ac

Summary for Subcatchment 1: Subarea

Runoff = 66.94 cfs @ 12.17 hrs, Volume= Routed to Pond 1B : Basin 3.726 af, Depth> 4.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

_	Area (ac) CN	Desc	cription			
*	3.170) 98	impe	ervious			
*	6.510) 74	lawn	- C			
*	0.240) 98	wate	r or effecti	ve infiltratio	on area	
*	1.130) 70	WOOd	ds - C			
	11.050) 81	Weig	ghted Aver	age		
	7.640)	69.1	69.14% Pervious Area			
	3.410)	30.8	6% Imperv	vious Area		
	Tc le	enath	Slope	Velocity	Capacity	Description	
	(min) ((feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption	
	10.0					Direct Entry,	

Subcatchment 1: Subarea

Summary for Subcatchment 2: Subarea

Runoff = 12.61 cfs @ 12.13 hrs, Volume= Routed to Pond 2B : Basin 0.618 af, Depth> 4.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ad	c) CN	l Desc	cription		
*	0.69	0 98	3 impe	ervious		
*	0.84	0 74	1 Iawn	- C		
*	0.09	0 98	3 wate	water or effective infiltration area		
	1.62	0 8	6 Weig	ghted Aver	age	
0.840 51.85% Pervious Area			5% Pervio	us Area		
	0.78	0	48.1	5% Imperv	vious Area	
	Tc Lo (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment 2: Subarea

Summary for Subcatchment 3: Subarea

Runoff = 75.17 cfs @ 12.23 hrs, Volume= 4.976 af, Depth> 4.47" Routed to Pond 3P : Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (a	ic) C	N	Desc	ription					
*	5.72	20 9	98	impe	pervious					
*	7.39	90 7	74	lawn	iwn - C					
*	0.20	00 9	98	water	r or effect	ive infiltratic	on area			
*	0.0	50 7	70	wood	ls - C					
	13.30	3 06	35	Weig	hted Ave	rage				
	7.44	40		55.69	% Pervic	us Area				
	5.92	20		44.31	I% Imper	vious Area				
	Tol	onath	CI	lono	Volocity	Capacity	Description			
		Lengin	31	lope	velocity	Capacity	Description			
	(min)	(Teet)	(π/π)	(TT/SeC)	(CTS)				
	15.0						Direct Entry,			

Subcatchment 3: Subarea

Summary for Subcatchment 4: Subarea

Runoff = 24.71 cfs @ 12.18 hrs, Volume= Routed to Pond 4B : Basin

1.367 af, Depth> 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ac)	CN	Desc	ription					
*	0.580	98	impe	ipervious					
*	3.630	74	lawn	wn - C					
*	0.180	98	wate	r or effecti	ve infiltratio	on area			
	4.390	78	Weig	hted Aver	age				
	3.630 82.69% Pervious Area								
	0.760	0.760 17.31% Impervious Area							
	Toler	ath	Slone	Velocity	Canacity	Description			
	(min) (f	eet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 4: Subarea

Summary for Subcatchment 5: Subarea

Runoff = 14.21 cfs @ 12.18 hrs, Volume= Routed to Pond 5RG : Rain Garden 0.785 af, Depth> 3.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ac)	CN	Desc	ription					
*	0.2	290	98	impe	ipervious					
*	2.2	270	74	lawn	iwn - C					
*	0.0	030	98	wate	ater or effective infiltration area					
	2.5	2.590 77 Weighted Average								
2.270 87.64% P					1% Pervio	us Area				
0.320			12.36% Impervious Area							
	Tc (min)	Lengt (fee	t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	10.0						Direct Entry,			

Subcatchment 5: Subarea

Summary for Subcatchment 6: Subarea

Runoff = 54.50 cfs @ 12.17 hrs, Volume= Routed to Pond 6P : Pond 3.044 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ac)	CN	Desc	ription					
*	2.990	98	impe	pervious					
*	4.250	74	lawn	iwn - C					
*	0.150	98	wate	r or effecti	ve infiltratio	on area			
*	1.410	70	wood	ds - C					
	8.800	82	Weig	hted Aver	age				
	5.660		64.32	2% Pervio	us Area				
	3.140		35.68	8% Imperv	rious Area				
Tc Length Slope Velocity Capacity				Velocity	Capacity	Description			
	<u>(min) (fe</u>	et)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 6: Subarea

Summary for Subcatchment 7a: Subarea

Runoff = 35.91 cfs @ 12.18 hrs, Volume= Routed to Pond 7RG : Rain Garden 1.987 af, Depth> 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (a	c) C	N	Desc	ription					
*	1.00	00 9	8	impe	pervious					
*	4.99	90 7	74	lawn	wn - C					
*	0.33	30 7	0	wood	oods - C					
*	0.06	50 <u>9</u>	98	wate	r or effecti	ve infiltratio	on area			
	6.38	6.380 78 Weighted Average								
	5.32	20		83.39	9% Pervio	us Area				
	1.06	50		16.61	I% Imper∖	vious Area				
	Tc Length		Slo	ope	Velocity	Capacity	Description			
	<u>(min)</u>	(feet)	(f	ft/ft)	(ft/sec)	(cfs)				
	10.0						Direct Entry,			

Subcatchment 7a: Subarea

Summary for Subcatchment 7b: Subarea

Runoff = 33.02 cfs @ 12.17 hrs, Volume= Routed to Pond 7P : Pond 1.852 af, Depth> 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (a	ac) (CN	Desc	ription					
*	1.6	670	98	impe	ipervious					
*	2.8	300	74	lawn	awn - C					
*	0.3	860	98	wate	ater or effective infiltration area					
*	0.3	390	70	wood	ls - C					
	5.2	5.220 83 Weighted Average								
	3.1	90		61.11	I% Pervi	ous Area				
	2.0)30		38.89	9% Impe	rvious Area				
	Тс	Length	S	Slope	Velocity	Capacity	Description			
_	(min)	(feet)		<u>(ft/ft)</u>	(ft/sec)	(cfs)				
	10.0						Direct Entry,			

Subcatchment 7b: Subarea

Summary for Subcatchment 8: Subarea

Runoff = 25.95 cfs @ 12.18 hrs, Volume= Routed to Pond 8B : Basin 1.435 af, Depth> 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

Area (a	c) C	N De	scription					
0.72	20 9	8 imp	pervious					
2.94	10 7	4 law	awn - C					
0.16	60 g	8 wat	er or effecti	ve infiltratio	on area			
0.79	90 7	0 wo	ods - C					
4.61	10 7	8 We	ighted Aver	age				
3.73	30	80.	91% Pervio	us Area				
0.88	30	19.	09% Imperv	/ious Area				
Tc L	.ength	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
10.0					Direct Entry,			
	Area (a 0.72 2.94 0.16 0.79 4.61 3.73 0.88 Tc L (min) 10.0	Area (ac) Cl 0.720 9 2.940 7 0.160 9 0.790 7 4.610 7 3.730 0.880 Tc Length (min) (feet) 10.0 10.0	Area (ac) CN Des 0.720 98 imp 2.940 74 law 0.160 98 wat 0.790 70 wood 4.610 78 We 3.730 80.3 0.880 19.4 Tc Length Slope (min) (feet) (ft/ft) 10.0 Ket Ket	Area (ac) CN Description 0.720 98 impervious 2.940 74 lawn - C 0.160 98 water or effecti 0.790 70 woods - C 4.610 78 Weighted Aver 3.730 80.91% Pervio 0.880 19.09% Impervious Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 10.0 10.0 10.0 10.0 10.0	Area (ac)CNDescription0.72098impervious2.94074lawn - C0.16098water or effective infiltrati0.79070woods - C4.61078Weighted Average3.73080.91% Pervious Area0.88019.09% Impervious AreaTcLengthSlopeVelocity(min)(feet)(ft/ft)(ft/sec)10.0			

Subcatchment 8: Subarea

Summary for Subcatchment 9: Subarea

Runoff = 79.67 cfs @ 12.13 hrs, Volume= Routed to Pond 9P : Pond 3.839 af, Depth> 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ac) CN	Desc	cription				
*	3.510) 98	impe	npervious				
*	6.900) 74	lawn	iwn - C				
*	0.410) 98	wate	ater or effective infiltration area				
10.820 83 Weighted Average					age			
6.900		C	63.7	7% Pervio	us Area			
	3.920	C	36.2	3% Imperv	vious Area			
	Tole	enath	Slope	Velocity	Canacity	Description		
	(min) ((feet)	(ft/ft)	(ft/sec)	(cfs)	Description		
	6.0					Direct Entry,		

Subcatchment 9: Subarea

Summary for Subcatchment 10: Subarea

Runoff = 11.48 cfs @ 12.18 hrs, Volume= Routed to Pond 10B : Basin 0.635 af, Depth> 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area ((ac)	CN	Desc	ription					
*	0.2	250	98	impe	ipervious					
*	1.	500	74	lawn	awn - C					
*	0.1	130	98	wate	ater or effective infiltration area					
*	0.1	160	70	WOOD	ls - C					
	2.0	2.040 78 Weighted Average								
	1.0	660		81.37	7% Pervio	us Area				
	0.3	380		18.63	3% Imperv	∕ious Area				
	Тс	Length	า :	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0						Direct Entry,			

Subcatchment 10: Subarea

Summary for Subcatchment 11: Subarea

Runoff = 58.76 cfs @ 12.13 hrs, Volume= Routed to Pond 11P : Pond 2.831 af, Depth> 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ac)	CN	Desc	ription					
*	2.960	98	impe	npervious					
*	4.830	74	lawn	iwn - C					
*	0.190	98	wate	r or effecti	ve infiltratio	on area			
	7.980 83 Weighted Average								
4.830 60.53% Pervious Area					us Area				
	3.150 39			39.47% Impervious Area					
	Tc Lenç (min) (fe	gth S et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	6.0					Direct Entry,			

Subcatchment 11: Subarea

Summary for Subcatchment 12: Subarea

Runoff = 41.52 cfs @ 12.18 hrs, Volume= Routed to Pond 12P : Pond 2.309 af, Depth> 3.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ac)) CN	Desc	cription					
*	1.880	98	impe	ipervious					
*	3.960) 74	lawn	awn - C					
*	0.130	98	wate	r or effecti	ve infiltratio	on area			
*	1.060) 70	WOOd	ds - C					
	7.030	80	Weig	ghted Aver	age				
	5.020)	71.4	1% Pervio	us Area				
	2.010)	28.5	9% Imperv	vious Area				
	Tc le	nath	Slope	Velocity	Capacity	Description			
	<u>(min) (</u>	feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 12: Subarea

Summary for Subcatchment 13: Subarea

Runoff = 31.01 cfs @ 12.18 hrs, Volume= Routed to Pond 13P : Pond 1.725 af, Depth> 3.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ac)	CN	Desc	ription					
*	1.110	98	impe	npervious					
*	3.970	74	lawn	wn - C					
*	0.170	98	wate	ater or effective infiltration area					
	5.250	80	Weig	hted Aver	age				
	3.970 75.62% Pervious Area				us Area				
	1.280	1.280 24.38% Impervious Area							
	Tc Leng (min) (fee	th S et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	10.0					Direct Entry,			

Subcatchment 13: Subarea

Summary for Subcatchment 14: Subarea

Runoff = 2.13 cfs @ 12.18 hrs, Volume= Routed to Link 2L : Northwest Subwatershed 0.117 af, Depth> 3.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (ac)	CN	Desc	ription		
*	0.030	98	impe	rvious		
*	0.300	74	lawn	- C		
*	0.080	70	WOOD	ls - C		
	0.410	75	Weig	hted Aver	age	
	0.380		92.68	3% Pervio	us Area	
	0.030 7.32% Impervious Area				ous Area	
	Tc Ler (min) (f	ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0					Direct Entry,

Subcatchment 14: Subarea

Summary for Subcatchment 15: Subarea

Runoff = 24.09 cfs @ 12.18 hrs, Volume= 1.333 af, Depth> 3.74" Routed to Link 3L : North Subwatershed (drainage swale)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

_	Area (ac)	CN	Description	า		
*	0.730	98	impervious	6		
*	3.550	74	lawn - C			
*	0.000	98	water or ef	fective	e infiltratio	on area
	4.280	78	Weighted A	Avera	ge	
	3.550		82.94% Pe	ervious	Area	
	0.730		17.06% Im	pervio	us Area	
	Tc Ler (min) (fe	ngth S eet)	Slope Velo (ft/ft) (ft/s	city (ec)	Capacity (cfs)	Description
	10.0					Direct Entry,

Subcatchment 15: Subarea

Summary for Subcatchment 16: Subarea

Runoff = 61.86 cfs @ 12.18 hrs, Volume= Routed to Link 4L : Southeast Subwatershed 3.407 af, Depth> 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (a	c) Cl	N Des	cription		
*	1.18	30 9	8 impe	ervious		
*	0.24	10 9	8 offsi	te road		
*	8.06	50 7	4 lawr	1 - C		
*	0.44	0 7	4 offsi	te lawn (R	OW) - C	
*	1.65	50 7	0 woo	ds - C `	•	
	11.57	707	6 Wei	ghted Aver	age	
	10.15	50	87.7	3% Pervio	us Area	
	1.42	20	12.2	7% Imper	/ious Area	
	Tc L	.ength	Slope	Velocity	Capacity	Description
	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0					Direct Entry,

Subcatchment 16: Subarea

Summary for Subcatchment 17: Subarea

Runoff = 20.04 cfs @ 12.18 hrs, Volume= Routed to Link 1L : West Subwatershed 1.108 af, Depth> 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100 yr Rainfall=6.18"

	Area (a	ac)	CN	Desc	ription		
*	0.6	60	98	impe	rvious		
*	2.9	900	74	lawn	- C		
*	0.0	000	98	wate	r or effecti	ve infiltratio	on area
	3.5	560	78	Weig	hted Aver	age	
	2.900 81.46% Pervious Area				5% Pervio	us Area	
	0.660 18.54% Impervious Area			1% Imperv	rious Area		
	Tc (min)	Lengt (feet	h S t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0						Direct Entry,

Subcatchment 17: Subarea

Summary for Pond 1B: Basin

11.050 ac, 30.86% Impervious, Inflow Depth > 4.05" for 100 yr event Inflow Area = 66.94 cfs @ 12.17 hrs, Volume= Inflow = 3.726 af 5.66 cfs @ 13.13 hrs, Volume= = Outflow 2.740 af, Atten= 92%, Lag= 57.6 min 0.24 cfs @ 13.13 hrs, Volume= Discarded = 0.216 af 5.42 cfs @ 13.13 hrs, Volume= Primary = 2.524 af Routed to Pond 2B : Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 937.46' @ 13.13 hrs Surf.Area= 0.922 ac Storage= 2.350 af

Plug-Flow detention time= 300.8 min calculated for 2.734 af (73% of inflow) Center-of-Mass det. time= 233.4 min (1,028.3 - 794.9)

Volume Invert Avail.Storage	ge Storage Description	n			
#1 930.50' 3.476	af Custom Stage Da	ta (Conic)L	isted below (Re	calc)	
Elevation Surf Area Vaida	Ina Stora Cu	m Storo	Mot Aroa		
(foot) (acros) (%)	(acro foot)	m.Store	(ocros)		
930.50 0.220 0.0	0.000	0.000	0.220		
931.00 0.220 30.0	0.033	0.033	0.224		
932.00 0.220 30.0	0.066	0.099	0.232		
933.00 0.220 30.0	0.066	0.165	0.240		
933.50 0.220 30.0	0.033	0.198	0.244		
934.00 0.280 100.0	0.125	0.323	0.304		
936.00 0.640 100.0	0.896	1.218	0.665		
938.00 1.040 100.0	1.664	2.882	1.066		
938.50 1.340 100.0	0.593	3.476	1.366		
Device Routing Invert	Outlet Devices				
#1 Discarded 930.50'	0 110 in/br Exfiltration	over Surf	ace area		
	Conductivity to Ground	water Eleva	$100 \text{ area}{100}$	Phase-In= 0.01 '	
#2 Primary 933.50'	12 0" Round Culvert		020.00		
	I = 100.0' RCP square	e edge head	dwall Ke= 0.50	0	
	Inlet / Outlet Invert= 93	3 50' / 933 (00' S = 0.0050'	'' Cc= 0.900	
	n=0.013 Flow Area=	0 79 sf	0 0 0.0000	, 00 0.000	
#3 Device 2 931 25'	4.0" Vert. Underdrain	C = 0.600	I imited to weir	flow at low heads	
#4 Device 2 934.00'	6.0" Vert Orifice C=	0.600 Lim	ited to weir flow	at low heads	
#5 Device 2 937 25'	36 0" Horiz Grate C	= 0.600 Lin	nited to weir flow	v at low heads	
#6 Primary 937.50'	10 0' long + 5 0 '/' Sid	e7 x 10 0'	breadth Broad	Crested Rectangular	Weir
"e rinnary our ou	Head (feet) 0 20 0 40	0.60 0.80	1 00 1 20 1 4) 1 60	
	1.000 (1000) 0.20 0.10	0.00			

Discarded OutFlow Max=0.24 cfs @ 13.13 hrs HW=937.46' (Free Discharge) **1=Exfiltration** (Controls 0.24 cfs)

Primary OutFlow Max=5.42 cfs @ 13.13 hrs HW=937.46' TW=932.21' (Dynamic Tailwater)

-3=Underdrain (Orifice Controls 0.84 cfs @ 9.58 fps)

-4=Orifice (Orifice Controls 1.69 cfs @ 8.62 fps)

—5=Grate (Weir Controls 2.89 cfs @ 1.49 fps)

-6=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1B: Basin

Summary for Pond 2B: Basin

Inflow Area = 12.670 ac, 33.07% Impervious, Inflow Depth > 2.98" for 100 yr event Inflow 14.38 cfs @ 12.13 hrs, Volume= 3.142 af = 10.63 cfs @ 12.21 hrs, Volume= Outflow = 2.997 af, Atten= 26%, Lag= 4.5 min 0.49 cfs @ 12.21 hrs, Volume= Discarded = 0.468 af Primary = 10.14 cfs @ 12.21 hrs, Volume= 2.529 af Routed to Link 3L : North Subwatershed (drainage swale)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 932.38' @ 12.21 hrs Surf.Area= 0.138 ac Storage= 0.234 af

Plug-Flow detention time= 40.5 min calculated for 2.991 af (95% of inflow) Center-of-Mass det. time= 19.6 min (999.2 - 979.7)

Volume	Invert A	vail.Storag	ge Storage Descr	iption											
#1	928.00'	0.330	af Custom Stage	e Data (Conic)l	_isted below (Re	ecalc)									
Elevatio	on Surf.Area	Voids	Inc.Store	Cum.Store	Wet.Area										
(fee	et) (acres)	(%)	(acre-feet)	(acre-feet)	(acres)										
928.0	0.090 0.090	0.0	0.000	0.000	0.090										
929.0	0.090 0.090	30.0	0.027	0.027	0.095										
930.0	0.090 0.090	30.0	0.027	0.054	0.100										
931.0	0.090 0.090	30.0	0.027	0.081	0.105										
932.0	0.120	100.0	0.105	0.186	0.136										
933.0	0.170	100.0	0.144	0.330	0.186										
Device	Routing	Invert	Outlet Devices												
#1	Discarded	928.00'	1.630 in/hr Exfiltra	ation over Surf	ace area										
			Conductivity to Gro	oundwater Eleva	ation = 925.50'	Phase-In= 0.01'									
#2	Primary	931.00'	12.0" Round Culv	vert											
			L= 50.0' RCP, en	d-section confo	rming to fill, Ke	= 0.500									
			Inlet / Outlet Invert	= 931.00' / 930.	.50' S= 0.0100	'/' Cc= 0.900									
			n= 0.013, Flow Ar	ea= 0.79 sf											
#3	Primary	932.00'	10.0' long + 5.0 '/	' SideZ x 10.0'	breadth Broad	-Crested Rectangular V	Neir								
			Head (feet) 0.20	0.40 0.60 0.80	1.00 1.20 1.4	0 1.60									
			Coet. (English) 2.4	49 2.56 2.70 2	2.69 2.68 2.69	2.67 2.64									
Discard		v-0.40 cfc	@ 12.21 hrs ∐\\/-	032 37' (Eroo	\sim										

Discarded OutFlow Max=0.49 cfs @ 12.21 hrs HW=932.37' (Free Discharge) **1=Exfiltration** (Controls 0.49 cfs)

Primary OutFlow Max=9.93 cfs @ 12.21 hrs HW=932.37' TW=0.00' (Dynamic Tailwater) -2=Culvert (Barrel Controls 3.35 cfs @ 4.27 fps) -3=Broad-Crested Rectangular Weir (Weir Controls 6.57 cfs @ 1.50 fps) Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Pond 2B: Basin

Summary for Pond 3P: Pond

Inflow Area	a =	17.750 ac, 3	7.63% Impe	ervious, Inflow l	Depth > 🗧	3.41" 1	for 100 y	r event
Inflow	=	75.32 cfs @	12.23 hrs,	Volume=	5.050 a	af		
Outflow	=	36.55 cfs @	12.44 hrs,	Volume=	4.142 a	af, Atter	า= 51%,	Lag= 12.7 min
Primary	=	36.55 cfs @	12.44 hrs,	Volume=	4.142 a	af		-
Routed to Link 1L : West Subwatershed								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 927.84' @ 12.44 hrs Surf.Area= 0.442 ac Storage= 1.822 af

Plug-Flow detention time= 94.4 min calculated for 4.133 af (82% of inflow) Center-of-Mass det. time= 38.8 min (830.7 - 792.0)

Volume	Invert A	vail.Storage	Storage Description		
#1	922.00'	2.383 af	Custom Stage Data	a (Conic) Listed	below (Recalc)
Elevation	Surf.Area	Inc.St	ore Cum.Store	Wet.Area	
(feet)	(acres)	(acre-fe	eet) (acre-feet)	(acres)	
922.00	0.200	0.0	000.0 000	0.200	
923.00	0.230	0.2	215 0.215	0.231	
924.00	0.270	0.2	250 0.465	0.272	
925.00	0.310	0.2	290 0.754	0.313	
926.00	0.360	0.3	335 1.089	0.364	
927.00	0.400	0.3	380 1.469	0.405	
928.00	0.450	0.4	1.894	0.456	
929.00	0.530	0.4	189 2.383	0.537	
Device Ro	outing	Invert Ou	tlet Devices		
#1 Pr #2 De #3 De #4 Pr	imary evice 1 evice 1 imary	921.00' 24. L= Inle n= 922.00' 3.0 925.50' 48. 928.00' 10. He. Co	0" Round Culvert 50.0' RCP, square e et / Outlet Invert= 921 0.013, Flow Area= 3 " Vert. Orifice C= 0 0" Horiz. Grate C= 0' long + 5.0 '/' Side ad (feet) 0.20 0.40 e ef. (English) 2.49 2.5	edge headwall, .00' / 920.00' .14 sf 0.600 Limited 0.600 Limited 0.60 0.80 1.00 56 2.70 2.69	Ke= 0.500 S= 0.0200 '/' Cc= 0.900 to weir flow at low heads to weir flow at low heads to weir flow at low heads o dth Broad-Crested Rectangular Wei r 0 1.20 1.40 1.60 2.68 2.69 2.67 2.64

Primary OutFlow Max=36.54 cfs @ 12.44 hrs HW=927.84' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 36.54 cfs @ 11.63 fps)

2=Orifice (Passes < 0.56 cfs potential flow)

-3=Grate (Passes < 92.49 cfs potential flow)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: Pond

Summary for Pond 4B: Basin

Inflow Area = 4.390 ac, 17.31% Impervious, Inflow Depth > 3.74" for 100 yr event Inflow = 24.71 cfs @ 12.18 hrs, Volume= 1.367 af 2.99 cfs @ 12.75 hrs, Volume= Outflow = 1.367 af, Atten= 88%, Lag= 34.2 min 2.60 cfs @ 12.75 hrs, Volume= Discarded = 1.293 af Primary = 0.39 cfs @ 12.75 hrs, Volume= 0.074 af Routed to Pond 3P : Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 938.54' @ 12.75 hrs Surf.Area= 0.360 ac Storage= 0.661 af

Plug-Flow detention time= 119.3 min calculated for 1.364 af (100% of inflow) Center-of-Mass det. time= 119.0 min (919.1 - 800.2)

Volume	Invert	Avail.Stora	ge Storage Des	cription		
#1	935.00'	1.426	af Custom Sta	ige Data (Conic)	Listed below (R	lecalc)
Elevatio	n Surf.A	rea Voids	Inc.Store	Cum.Store	Wet.Area	
(fee	t) (acr	es) (%)	(acre-feet)	(acre-feet)	(acres)	
935.0	0 0.1	0.0	0.000	0.000	0.180	
936.0	0 0.1	180 30.0	0.054	0.054	0.187	
937.0	0 0.2	220 100.0	0.200	0.254	0.228	
938.0	0 0.2	260 100.0	0.240	0.493	0.269	
940.0	0 0.7	710 100.0	0.933	1.426	0.719	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	935.00'	3.600 in/hr Exfil	tration over Sur	face area	
			Conductivity to G	Groundwater Elev	ation = 933.00'	Phase-In= 0.02'
#2	Primary	937.50'	4.0" Vert. Orific	e C= 0.600 Lin	nited to weir flow	w at low heads
#3	Primary	938.75'	36.0" Horiz. Gra	te C= 0.600 L	imited to weir flo	ow at low heads
#4 Primary 939.00' 10.0' long + 5.0 '/' SideZ x 10.0' breadth Broad-Crested Rectang Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.68 2.69 2.64						

Discarded OutFlow Max=2.60 cfs @ 12.75 hrs HW=938.54' (Free Discharge) **1=Exfiltration** (Controls 2.60 cfs)

Primary OutFlow Max=0.39 cfs @ 12.75 hrs HW=938.54' TW=927.04' (Dynamic Tailwater) **2=Orifice** (Orifice Controls 0.39 cfs @ 4.51 fps)

-3=Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Pond 4B: Basin

Summary for Pond 5RG: Rain Garden

Inflow Area = 2.590 ac, 12.36% Impervious, Inflow Depth > 3.63" for 100 yr event Inflow 14.21 cfs @ 12.18 hrs, Volume= 0.785 af = 13.06 cfs @ 12.22 hrs, Volume= Outflow = 0.713 af, Atten= 8%, Lag= 2.6 min Discarded = 0.01 cfs @ 12.22 hrs, Volume= 0.009 af 13.05 cfs @ 12.22 hrs, Volume= Primary = 0.704 af Routed to Pond 6P : Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 924.80' @ 12.22 hrs Surf.Area= 0.119 ac Storage= 0.194 af

Plug-Flow detention time= 103.2 min calculated for 0.713 af (91% of inflow) Center-of-Mass det. time= 63.5 min (865.3 - 801.9)

Volume	Invert	Avail.Storag	ge Storage Des	cription		
#1	921.00'	0.377	af Custom Sta	ge Data (Conic)	Listed below (Re	ecalc)
Elevatio (fee	on Surf.Ar et) (acre	ea Voids es) (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)	
921.0	0.0	30 0.0	0.000	0.000	0.030	
922.0	0.0 0.0 00 0.0	80 100.0	0.106	0.009	0.033	
926.0	0.1	90 100.0	0.262	0.377	0.194	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	921.00'	0.070 in/hr Exfilt Conductivity to G	tration over Sur Groundwater Elev	face area ation = 917.00'	Phase-In= 0.01'
#2	Primary	922.75	3.0" Vert. Orifice	e C= 0.600 Lin	nited to weir flow	w at low heads
#3 Primary 924.25' #4 Primary 925.00'			10.0' long + 5.0 Head (feet) 0.20 Coef. (English) 2	'' SideZ x 10.0 0.40 0.60 0.80 2.49 2.56 2.70	breadth Broac 1.00 1.20 1.4 2.69 2.68 2.69	d-Crested Rectangular Weii 40 1.60 2.67 2.64

Discarded OutFlow Max=0.01 cfs @ 12.22 hrs HW=924.79' (Free Discharge) **1=Exfiltration** (Controls 0.01 cfs)

Primary OutFlow Max=12.66 cfs @ 12.22 hrs HW=924.79' TW=914.38' (Dynamic Tailwater)

2=Orifice (Orifice Controls 0.33 cfs @ 6.67 fps)

-3=Grate (Weir Controls 12.33 cfs @ 2.41 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 5RG: Rain Garden

Summary for Pond 6P: Pond

Inflow Area	a =	11.390 ac, 3	30.38% Impe	ervious, Inflow	Depth >	3.95"	for 100	yr event			
Inflow	=	66.31 cfs @	12.18 hrs,	Volume=	3.748	af		-			
Outflow	=	25.56 cfs @	12.40 hrs,	Volume=	3.223	af, Atte	n= 61%,	Lag= 12.9 n	nin		
Primary	=	25.56 cfs @	12.40 hrs,	Volume=	3.223	af		-			
Routed to Link 4L : Southeast Subwatershed											

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 914.99' @ 12.40 hrs Surf.Area= 0.402 ac Storage= 1.310 af

Plug-Flow detention time= 88.7 min calculated for 3.216 af (86% of inflow) Center-of-Mass det. time= 33.2 min (839.5 - 806.3)

Volume	Inve	ert Av	/ail.Storage	Storage Descr	iption				
#1	910.0	0'	1.750 af	Custom Stage	e Data (C	onic)Listed b	elow (Reca	lc)	
Elevatio (fee	on Su et) (rf.Area acres)	Inc.St (acre-fe	ore Cum.S et) (acre-f	tore eet)	Wet.Area (acres)			
910.0 912.0 914.0)0)0)0	0.150 0.230 0.340	0.0 0.3 0.5 0.5	000 0. 377 0. 566 0.	.000 .377 .944 .750	0.150 0.231 0.343 0.475			
Device	Routing	0.470	Invert Ou	tlet Devices	.750	0.475			
#1	Primary	ę	909.00' 21. L= Inle n=	0" Round Culv 100.0' RCP, so et / Outlet Invert 0.013, Flow Are	/ert quare edg = 909.00' ea= 2.41	je headwall, / 908.00' S= sf	Ke= 0.500 = 0.0100 '/'	Cc= 0.900	
#2 #3 #4	Device 1 Device 1 Primary		910.00' 3.0 912.60' 48. 915.00' 10. He Co	" Vert. Orifice 0" Horiz. Grate 0' long + 5.0 '/' ad (feet) 0.20 (ef. (English) 2.4	C= 0.60 C= 0.60 SideZ x 0.40 0.60 19 2.56 2	C Limited to C Limited to 10.0' bread 0.80 1.00 2.70 2.69 2.	weir flow at b weir flow a th Broad-C 1.20 1.40 68 2.69 2.6	low heads at low heads rested Rectang 1.60 67 2.64	jular Weir

Primary OutFlow Max=25.56 cfs @ 12.40 hrs HW=914.99' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Barrel Controls 25.56 cfs @ 10.63 fps)

-2=Orifice (Passes < 0.52 cfs potential flow)

-3=Grate (Passes < 93.54 cfs potential flow)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Pond 6P: Pond

Summary for Pond 7P: Pond

Inflow Are Inflow Outflow Primary Routed	ea = 11.60 = 66.09 = 12.97 = 12.97 d to Link 4L : So	0 ac, 26.64% cfs @ 12.19 cfs @ 12.60 cfs @ 12.60 putheast Subw	Impervious, Ir hrs, Volume= hrs, Volume= hrs, Volume= ratershed	offow Depth > 3.739 3.520 3.520	3.87" 9 af) af, Atte) af	for 100 yr e n= 80%, La	event g= 24.3 min	
Routing b Peak Elev	y Dyn-Stor-Ind /= 922.28' @ 12	method, Time 2.60 hrs Surf	Span= 0.00-24 Area= 0.867 a	4.00 hrs, dt= (c Storage=).05 hrs 1.829 af			
Plug-Flow Center-of	/ detention time -Mass det. time	= 134.8 min c = 107.1 min (alculated for 3. 907.8 - 800.8)	512 af (94% d	of inflow)			
Volume	Invert A	vail.Storage	Storage Desc	ription				
#1	919.30'	2.859 af	Custom Stag	e Data (Con	ic)Listed	below (Reca	alc)	_
Elevation (feet)	n Surf.Area) (acres)	Inc.St (acre-fe	ore Cum. et) (acre	Store We	et.Area (acres)			
919.30	0.390	0.0	000 (0.000	0.390			
922.30	0.870	1.8	42	1.842	0.872			
923.30) 1.170	1.0	16 2	2.859	1.172			
Device	Routing	Invert Ou	tlet Devices					
#1	Primary	918.30' 18 .	0" Round Cul	vert				
		L=	100.0' RCP, s	square edge l	neadwall,	Ke= 0.500		
		Inle	et / Outlet Inver	t= 918.30' / 9	18.00' S	S= 0.0030 '/'	Cc= 0.900	
		n=	0.013, Flow A	rea= 1.77 st				
#2		919.30 8.0	Vert. Orifice	C = 0.600	Limited to	o weir flow at	l Iow neads	
#3	Device I	920.20 1.0 2 F	nd Contraction	ise Sharp-Ci	restea R	ectangular v	veir	
#4	Device 1	921.50' 36.	0" Horiz. Grat	e C= 0.600	Limited	to weir flow a	at low heads	
#5 I	Primary	922.30' 10 . He Co	10.0' long + 5.0 '/' SideZ x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64					
						·		

Primary OutFlow Max=12.97 cfs @ 12.60 hrs HW=922.28' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Barrel Controls 12.97 cfs @ 7.34 fps)

2=Orifice (Passes < 2.74 cfs potential flow) **3=Sharp-Crested Rectangular Weir** (Passes < 5.60 cfs potential flow)

4=Grate (Passes < 21.41 cfs potential flow)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Pond 7P: Pond

Summary for Pond 7RG: Rain Garden

Inflow Area = 6.380 ac, 16.61% Impervious, Inflow Depth > 3.74" for 100 yr event Inflow = 35.91 cfs @ 12.18 hrs, Volume= 1.987 af 34.14 cfs @ 12.21 hrs, Volume= Outflow = 1.905 af, Atten= 5%, Lag= 2.0 min 0.02 cfs @ 12.21 hrs, Volume= Discarded = 0.018 af Primary = 34.12 cfs @ 12.21 hrs, Volume= 1.887 af Routed to Pond 7P : Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 923.08' @ 12.21 hrs Surf.Area= 0.166 ac Storage= 0.218 af

Plug-Flow detention time= 32.4 min calculated for 1.901 af (96% of inflow) Center-of-Mass det. time= 11.8 min (811.9 - 800.2)

Volume	Invert	Avail.Stora	ge Storage Des	scription				
#1	920.30'	0.255	af Custom Sta	age Data (Conic)	Listed below (Re	ecalc)		
Elevatior (feet	n Surf.Are) (acres	ea Voids s) (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)			
920.30 921.30 922.30 923.30) 0.06) 0.06) 0.12) 0.18	60 0.0 60 30.0 20 100.0 30 100.0	0.000 0.018 0.088 0.149	0.000 0.018 0.106 0.255	0.060 0.064 0.124 0.185			
Device	Routing	Invert	Outlet Devices					
#1 Discarded 920. #2 Primary 922.		920.30' 922.05'	0.110 in/hr Exfi Conductivity to (8.0' long + 5.0 Head (feet) 0.20	 1.10 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 915.00' Phase-In= 0.01' 3.0' Iong + 5.0 '/ SideZ x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 				
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64					

Discarded OutFlow Max=0.02 cfs @ 12.21 hrs HW=923.07' (Free Discharge) **1=Exfiltration** (Controls 0.02 cfs)

Primary OutFlow Max=33.49 cfs @ 12.21 hrs HW=923.07' TW=921.52' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 33.49 cfs @ 2.50 fps)

Hydrograph Inflow
 Outflow
 Discarded
 Primary 35.91 cfs Inflow Area=6.3 40 38-Peak Elev=92 34.12 cfs 36 34 Storage=0.218 af 32 30 28 26 24 22 20 18 Flow (cfs) 16-14 12-10-8-6 0 12 4 2 0-10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 2 Ó 1 ż 4 5 ģ 6 7 8

Pond 7RG: Rain Garden

Summary for Pond 8B: Basin

Inflow Area = 4.610 ac, 19.09% Impervious, Inflow Depth > 3.74" for 100 yr event Inflow 25.95 cfs @ 12.18 hrs, Volume= 1.435 af = 9.76 cfs @ 12.39 hrs, Volume= Outflow = 0.940 af, Atten= 62%, Lag= 12.9 min 0.02 cfs @ 12.39 hrs, Volume= Discarded = 0.015 af Primary = 9.74 cfs @ 12.39 hrs, Volume= 0.926 af Routed to Pond 9P : Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 919.45' @ 12.39 hrs Surf.Area= 0.307 ac Storage= 0.683 af

Plug-Flow detention time= 171.4 min calculated for 0.940 af (66% of inflow) Center-of-Mass det. time= 96.0 min (896.2 - 800.2)

Volume	Invert A	vail.Stora	ge Storage Desc	ription			
#1	915.50'	1.082	af Custom Stag	<mark>յe Data (Conic)</mark> Լ	_isted below (Red	calc)	
Elevatio	on Surf.Area	Voids	Inc.Store	Cum.Store	Wet.Area		
(fee	et) (acres)	(%)	(acre-feet)	(acre-feet)	(acres)		
915.5	50 0.160	0.0	0.000	0.000	0.160		
916.5	50 0.160	30.0	0.048	0.048	0.167		
917.0	0.180	100.0	0.085	0.133	0.187		
918.0	0.210	100.0	0.195	0.328	0.218		
919.0	0.250	100.0	0.230	0.557	0.259		
920.5	50 0.460	100.0	0.525	1.082	0.469		
Device	Routing	Invert	Outlet Devices				
#1	Discarded	915.50'	0.040 in/hr Exfilt	ration over Surf	ace area		
#2	Primary	916.50'	Conductivity to Gr 18.0" Round Cul L= 100.0' RCP, s Inlet / Outlet Inver n= 0.013, Flow A	roundwater Eleva I vert square edge hea t= 916.50' / 916. rea= 1.77 sf	ation = 906.50' dwall, Ke= 0.500 00' S= 0.0050 '/	Phase-In= 0.01' 0 /' Cc= 0.900	
#3 #4 #5	Device 2 Device 2 Primary	916.75' 919.00' 919.50'	3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads 36.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads 10.0' long + 5.0 '/' SideZ x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64				

Discarded OutFlow Max=0.02 cfs @ 12.39 hrs HW=919.45' (Free Discharge) **1=Exfiltration** (Controls 0.02 cfs)

Primary OutFlow Max=9.69 cfs @ 12.39 hrs HW=919.45' TW=902.39' (Dynamic Tailwater)

-2=Culvert (Passes 9.69 cfs of 10.85 cfs potential flow)

3=Orifice (Orifice Controls 0.38 cfs @ 7.73 fps)

4=Grate (Weir Controls 9.31 cfs @ 2.19 fps)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Pond 8B: Basin

Summary for Pond 9P: Pond

 Inflow Area =
 15.430 ac, 31.11% Impervious, Inflow Depth > 3.71" for 100 yr event

 Inflow =
 79.95 cfs @ 12.13 hrs, Volume=
 4.765 af

 Outflow =
 8.76 cfs @ 13.04 hrs, Volume=
 3.663 af, Atten= 89%, Lag= 54.5 min

 Primary =
 8.76 cfs @ 13.04 hrs, Volume=
 3.663 af

 Routed to Link 3L : North Subwatershed (drainage swale)
 3.663 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 902.93' @ 13.04 hrs Surf.Area= 0.733 ac Storage= 2.697 af

Plug-Flow detention time= 228.5 min calculated for 3.655 af (77% of inflow) Center-of-Mass det. time= 155.1 min (963.4 - 808.3)

Volume	Inv	ert A	vail.Storage	Storage Description	ו		
#1	898.	00'	3.524 af	Custom Stage Dat	a (Conic) Listed b	pelow (Recalc)	
Elevatio	on Su	urf.Area	Inc.St	ore Cum.Store	Wet.Area		
(fee	et)	(acres)	(acre-fe	eet) (acre-feet)	(acres)		
898.0	00	0.410	0.0	0.000 0.000	0.410		
899.0	00	0.460	0.4	0.435	0.461		
901.0	00	0.560	1.0	1.453	0.564		
903.0	00	0.740	1.2	296 2.749	0.746		
904.0	00	0.810	0.7	75 3.524	0.818		
Device	Routing		Invert Ou	tlet Devices			
#1	Primary		898.00' 3.0	" Vert. Orifice C= (0.600 Limited to	weir flow at low heads	
#2	Primary		900.00' 12.	0" Vert. Orifice C=	0.600 Limited t	o weir flow at low heads	
#3	Primary		902.75' 36 .	0" Horiz. Grate C=	0.600 Limited t	o weir flow at low heads	
#4	Primary		903.00' 10. He Co	0' long + 5.0 '/' Side ad (feet) 0.20 0.40 ef. (English) 2.49 2.	eZ x 10.0' bread 0.60 0.80 1.00 56 2.70 2.69 2	th Broad-Crested Rectangular V 1.20 1.40 1.60 .68 2.69 2.67 2.64	Vei

Primary OutFlow Max=8.76 cfs @ 13.04 hrs HW=902.93' TW=0.00' (Dynamic Tailwater)

-1=Orifice (Orifice Controls 0.52 cfs @ 10.55 fps)

-2=Orifice (Orifice Controls 5.89 cfs @ 7.51 fps)

-3=Grate (Weir Controls 2.35 cfs @ 1.39 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 10B: Basin

Inflow Area = 2.040 ac, 18.63% Impervious, Inflow Depth > 3.74" for 100 yr event Inflow 11.48 cfs @ 12.18 hrs, Volume= 0.635 af = 0.34 cfs @ 15.07 hrs, Volume= Outflow = 0.296 af, Atten= 97%, Lag= 173.9 min Discarded = 0.17 cfs @ 15.07 hrs, Volume= 0.173 af 0.17 cfs @ 15.07 hrs, Volume= Primary = 0.123 af Routed to Link 3L : North Subwatershed (drainage swale)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 914.16' @ 15.07 hrs Surf.Area= 0.216 ac Storage= 0.449 af

Plug-Flow detention time= 324.6 min calculated for 0.296 af (47% of inflow) Center-of-Mass det. time= 240.6 min (1,040.7 - 800.2)

Volume	Invert	Avail.Stora	ge Storage Des	cription		
#1	910.00'	0.913	af Custom Sta	ge Data (Conic)	Listed below (R	ecalc)
Elevatio (fee	on Surf.Ar et) (acre	rea Voids es) (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)	
910.0	0.1	30 0.0	0.000	0.000	0.130	
912.0	0.1	30 30.0	0.078	0.078	0.142	
914.0	0.2	10 100.0	0.337	0.415	0.223	
916.0	0 0.2	90 100.0	0.498	0.913	0.305	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	910.00'	0.500 in/hr Exfilt	tration over Sur	face area	
			Conductivity to G	Froundwater Elev	ation = 905.00'	Phase-In= 0.01'
#2	Primary	913.50'	3.0" Vert. Orifice	e C= 0.600 Lin	nited to weir flow	w at low heads
#3	Primary	914.50'	36.0" Horiz. Gra	te C= 0.600 L	imited to weir flo	ow at low heads
#4	Primary	915.00'	10.0' long + 5.0 Head (feet) 0.20 Coef. (English) 2	'' SideZ x 10.0 0.40 0.60 0.80 2.49 2.56 2.70	' breadth Broad) 1.00 1.20 1.4 2.69 2.68 2.69	d-Crested Rectangular Weii 40 1.60 2.67 2.64

Discarded OutFlow Max=0.17 cfs @ 15.07 hrs HW=914.16' (Free Discharge) **1=Exfiltration** (Controls 0.17 cfs)

Primary OutFlow Max=0.17 cfs @ 15.07 hrs HW=914.16' TW=0.00' (Dynamic Tailwater) -2=Orifice (Orifice Controls 0.17 cfs @ 3.52 fps) -3=Grate (Controls 0.00 cfs) -4=Broad-Crested Rectangular Weir (Controls 0.00 cfs) Prepared by HP Inc. HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Pond 10B: Basin

Summary for Pond 11P: Pond

Inflow Area	a =	7.980 ac, 3	39.47% Impe	ervious, Inflow [Depth > 4	.26" for	100 yr eve	ent
Inflow	=	58.76 cfs @	12.13 hrs,	Volume=	2.831 at	f		
Outflow	=	15.76 cfs @	12.34 hrs,	Volume=	2.395 at	f, Atten= 7	73%, Lag=	= 12.8 min
Primary	=	15.76 cfs @	12.34 hrs,	Volume=	2.395 at	f	•	
Routed	to Link	3L : North Su	bwatershed	(drainage swale	e)			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 916.48' @ 12.34 hrs Surf.Area= 0.444 ac Storage= 1.332 af

Plug-Flow detention time= 130.0 min calculated for 2.390 af (84% of inflow) Center-of-Mass det. time= 77.1 min (864.7 - 787.6)

Volume	Invert	Avail.Storage	Storage	Description				
#1	912.20'	1.821 a	Custon	n Stage Data	(Conic)Listed	below (Reca	llc)	
Elevatior	Surf.Are	a Inc.9	Store	Cum.Store	Wet.Area			
(feet) (acres	s) (acre-	feet)	(acre-feet)	(acres)			
912.20	0.19	0 0	.000	0.000	0.190			
915.00	0.35	0 0	.745	0.745	0.352			
917.00	0.48	0 0	.827	1.571	0.484			
917.50	0.52	0 0	.250	1.821	0.524			
Device	Routing	Invert C	utlet Devic	es				
#1	Primary	912.20' 1	8.0" Rour	nd Culvert				
		L	= 50.0' R	CP, square eo	dge headwall,	Ke= 0.500		
		Ir	let / Outle	t Invert= 912.2	20'/912.00'	S= 0.0040 '/'	Cc= 0.900	
		n	= 0.013, F	low Area= 1.7	77 sf			
#2	Device 1	912.20' 3	.0" Vert. C	orifice C= 0.	600 Limited t	o weir flow at	t low heads	
#3	Device 1	914.00' 1 2	. 0' long x End Contr	1.50' rise Sha action(s)	arp-Crested R	ectangular V	Veir	
#4	Device 1	915.50' 3	6.0" Horiz	. Grate C= 0	.600 Limited	to weir flow a	at low heads	
#5	Primary	916.50' 1 F	0.0' long ead (feet)	+ 5.0 '/' SideZ 0.20 0.40 0	x 10.0' brea .60 0.80 1.00	dth Broad-C 1.20 1.40	rested Rectangular 1.60	Weir
		C	oef. (Engĺi	sh) 2.49 2.50	6 2.70 2.69 2	2.68 2.69 2.	67 2.64	

Primary OutFlow Max=15.76 cfs @ 12.34 hrs HW=916.48' TW=0.00' (Dynamic Tailwater)

-**1=Culvert** (Barrel Controls 15.76 cfs @ 8.92 fps)

2=Orifice (Passes < 0.48 cfs potential flow)

-3=Sharp-Crested Rectangular Weir (Passes < 6.72 cfs potential flow) -4=Grate (Passes < 20.02 cfs potential flow)

-4=Grate (Passes < 29.92 cfs potential flow)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD® 10.10-6a s/n 11025 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 12P: Pond

Inflow Are	a =	7.030 ac, 2	28.59% Impe	ervious, Inflow I	Depth > 3.	94" for	100 yr event	
Inflow	=	41.52 cfs @	12.18 hrs,	Volume=	2.309 af			
Outflow	=	14.97 cfs @	12.40 hrs,	Volume=	1.959 af,	Atten= 6	4%, Lag= 1	3.2 min
Primary	=	14.97 cfs @	12.40 hrs,	Volume=	1.959 af			
Routed	to Link	3L : North Su	bwatershed	(drainage swale	e)			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 926.00' @ 12.40 hrs Surf.Area= 0.350 ac Storage= 0.892 af

Plug-Flow detention time= 96.3 min calculated for 1.955 af (85% of inflow) Center-of-Mass det. time= 43.1 min (839.8 - 796.7)

Volume	Inve	ert A	vail.Storage	Storage D	escription				
#1	922.0	0'	1.276 af	Custom S	Stage Data	(Conic)Listed	below (Reca	lc)	
Elevatio	on Su	rf.Area	Inc.St	ore Cu	um.Store	Wet.Area			
(fee	et) (acres)	(acre-fe	eet) (a	cre-feet)	(acres)			
922.0	0	0.130	0.0	000	0.000	0.130			
923.0	00	0.160	0.2	145	0.145	0.161			
926.0	00	0.350	0.7	747	0.891	0.352			
927.0	00	0.420	0.3	384	1.276	0.423			
Device	Routing		Invert Ou	tlet Devices	5				
#1	Primary		922.00' 18 .	0" Round	Culvert				
			L= Inle n=	90.0' RCF et / Outlet Ir 0.013, Flov	², square eo ìvert= 922.(w Area= 1.7	1ge headwall,)0' / 921.00' \$ 77 sf	Ke= 0.500 S= 0.0111 '/'	Cc= 0.900	
#2	Device 1		922.00' 3.0	" Vert. Orif	fice C= 0.0	600 Limited t	o weir flow at	low heads	
#3 #4	Device 1 Primary		924.20' 36. 926.00' 10. He Co	0" Horiz. G 0' long + 5 ad (feet) 0. ef (English	5.0 '/' SideZ 20 0.40 0 2 49 2 50	0.600 Limited x 10.0' brea .60 0.80 1.00 6 2 70 2 69 2	to weir flow a dth Broad-C 1.20 1.40 2.68 2.69 2.0	at low heads rested Rectang 1.60 67 2 64	ular Weir
			00		,	.			

Primary OutFlow Max=14.96 cfs @ 12.40 hrs HW=926.00' TW=0.00' (Dynamic Tailwater)

-**1=Culvert** (Barrel Controls 14.96 cfs @ 8.47 fps)

-2=Orifice (Passes < 0.47 cfs potential flow)

3=Grate (Passes < 45.67 cfs potential flow)

-4=Broad-Crested Rectangular Weir (Weir Controls 0.00 cfs @ 0.07 fps)

Pond 12P: Pond

Summary for Pond 13P: Pond

 Inflow Area =
 5.250 ac, 24.38% Impervious, Inflow Depth > 3.94" for 100 yr event

 Inflow =
 31.01 cfs @ 12.18 hrs, Volume=
 1.725 af

 Outflow =
 9.41 cfs @ 12.44 hrs, Volume=
 1.425 af, Atten= 70%, Lag= 15.7 min

 Primary =
 9.41 cfs @ 12.44 hrs, Volume=
 1.425 af

 Routed to Link 2L : Northwest Subwatershed
 1.425 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 898.69' @ 12.44 hrs Surf.Area= 0.324 ac Storage= 0.824 af

Plug-Flow detention time= 167.3 min calculated for 1.422 af (82% of inflow) Center-of-Mass det. time= 110.3 min (907.0 - 796.7)

Volume	Inve	ert A	vail.Storage	e Storaç	ge Description				
#1	895.3	0'	1.216 a	f Custo	om Stage Data	(Conic)Listed	l below (Reca	lc)	
Elevatio	on Sui	rf.Area	Inc.	Store	Cum.Store	Wet.Area			
(fee	et) (acres)	(acre	-feet)	(acre-feet)	(acres)			
895.3	30	0.170	(0.000	0.000	0.170			
896.0	00	0.200	().129	0.129	0.200			
897.0	00	0.240	().220	0.349	0.241			
898.0	00	0.290	().265	0.614	0.292			
898.8	80	0.330	().248	0.861	0.333			
899.8	80	0.380	().355	1.216	0.384			
Device	Routing		Invert C	Dutlet Dev	/ices				
#1	Primary		895.30' 1 L II	5.0" Ro = 50.0' hlet / Outl = 0.013.	u nd Culvert RCP, square ec et Invert= 895.3 Flow Area= 1.2	lge headwall, 30' / 895.00' 23 sf	Ke= 0.500 S= 0.0060 '/'	Cc= 0.900	
#2	Device 1		895.30' 4	.0" Vert.	Orifice C= 0.6	600 Limited	to weir flow at	low heads	
#3	Device 1		897.30' 1	.0' long x End Cor	x 1.00' rise Shants traction(s)	rp-Crested F	Rectangular V	Veir	
#4	Device 1		898.30' 3	6.0" Hor	i z. Grate ´C= 0	.600 Limited	to weir flow a	at low heads	
#5	Primary		898.80' 1 H C	0.0' long lead (fee Coef. (Eng	+ 5.0 '/' SideZ t) 0.20 0.40 0. glish) 2.49 2.56	x 10.0' brea 60 0.80 1.00 6 2.70 2.69	dth Broad-C 0 1.20 1.40 2.68 2.69 2.6	rested Rectang 1.60 67 2.64	ular Wei

Primary OutFlow Max=9.41 cfs @ 12.44 hrs HW=898.68' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Barrel Controls 9.41 cfs @ 7.67 fps)

2=Orifice (Passes < 0.75 cfs potential flow)

-3=Sharp-Crested Rectangular Weir (Passes < 3.64 cfs potential flow)

4=Grate (Passes < 7.34 cfs potential flow)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 13P: Pond

Summary for Link 1L: West Subwatershed

 Inflow Area =
 21.310 ac, 34.44% Impervious, Inflow Depth > 2.96" for 100 yr event

 Inflow =
 52.33 cfs @
 12.20 hrs, Volume=
 5.250 af

 Primary =
 52.33 cfs @
 12.20 hrs, Volume=
 5.250 af, Atten= 0%, Lag= 0.0 min

 Routed to nonexistent node 99L
 5.250 af, Atten= 0%, Lag= 0.0 min
 5.250 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 1L: West Subwatershed

Summary for Link 2L: Northwest Subwatershed

 Inflow Area =
 5.660 ac, 23.14% Impervious, Inflow Depth > 3.27" for 100 yr event

 Inflow =
 10.36 cfs @
 12.37 hrs, Volume=
 1.543 af

 Primary =
 10.36 cfs @
 12.37 hrs, Volume=
 1.543 af, Atten= 0%, Lag= 0.0 min

 Routed to nonexistent node 99L
 10.36 cfs
 10.36 cfs
 1.543 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 2L: Northwest Subwatershed

Summary for Link 3L: North Subwatershed (drainage swale)

Inflow Area	a =	49.430 ac,	30.87% Impe	ervious,	Inflow Depth >	2.9	1" for 100) yr event
Inflow	=	67.12 cfs @	12.20 hrs,	Volume	= 12.002	af		-
Primary	=	67.12 cfs @	12.20 hrs,	Volume	= 12.002	af, /	Atten= 0%,	Lag= 0.0 min
Routed	to none	existent node	99L					

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 3L: North Subwatershed (drainage swale)

Summary for Link 4L: Southeast Subwatershed

 Inflow Area =
 34.560 ac, 23.06% Impervious, Inflow Depth > 3.52" for 100 yr event

 Inflow =
 89.93 cfs @
 12.19 hrs, Volume=
 10.150 af

 Primary =
 89.93 cfs @
 12.19 hrs, Volume=
 10.150 af, Atten= 0%, Lag= 0.0 min

 Routed to nonexistent node 99L
 10.150 af, Atten= 0%, Lag= 0.0 min
 10.150 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 4L: Southeast Subwatershed

Events for Subcatchment 1: Subarea

Event	Rainfall Runoff Volume		Depth		
	(inches) (cfs)		(acre-feet)	(inches)	
1 yr	2.40	14.43	0.802	0.87	
2 yr	2.70	18.14	1.001	1.09	
10 yr	3.81	32.93	1.806	1.96	
100 yr	6.18	66.94	3.726	4.05	

Events for Subcatchment 2: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	3.38	0.157	1.16
2 yr	2.70	4.08	0.190	1.41
10 yr	3.81	6.77	0.321	2.37
100 yr	6.18	12.61	0.618	4.58

Events for Subcatchment 3: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	18.90	1.223	1.10
2 yr	2.70	23.09	1.490	1.34
10 yr	3.81	39.32	2.546	2.29
100 yr	6.18	75.17	4.976	4.47

Events for Subcatchment 4: Subarea

Event	Rainfall Runoff Vol		Volume	Depth	
	(inches)	(cfs)	(acre-feet)	(inches)	
1 yr	2.40	4.65	0.265	0.72	
2 yr	2.70	6.01	0.336	0.92	
10 yr	3.81	11.57	0.635	1.74	
100 yr	6.18	24.71	1.367	3.74	

Events for Subcatchment 5: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	2.54	0.146	0.68
2 yr	2.70	3.32	0.187	0.87
10 yr	3.81	6.54	0.359	1.66
100 yr	6.18	14.21	0.785	3.63

Events for Subcatchment 6: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	12.26	0.678	0.92
2 yr	2.70	15.29	0.841	1.15
10 yr	3.81	27.25	1.496	2.04
100 yr	6.18	54.50	3.044	4.15

Events for Subcatchment 7a: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	6.76	0.385	0.72
2 yr	2.70	8.74	0.489	0.92
10 yr	3.81	16.82	0.923	1.74
100 yr	6.18	35.91	1.987	3.74

Events for Subcatchment 7b: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	7.74	0.426	0.98
2 yr	2.70	9.57	0.526	1.21
10 yr	3.81	16.77	0.923	2.12
100 yr	6.18	33.02	1.852	4.26

Events for Subcatchment 8: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	4.88	0.278	0.72
2 yr	2.70	6.31	0.353	0.92
10 yr	3.81	12.15	0.667	1.74
100 yr	6.18	25.95	1.435	3.74

Events for Subcatchment 9: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	19.06	0.884	0.98
2 yr	2.70	23.51	1.090	1.21
10 yr	3.81	40.89	1.913	2.12
100 yr	6.18	79.67	3.839	4.26

Events for Subcatchment 10: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	2.16	0.123	0.72
2 yr	2.70	2.79	0.156	0.92
10 yr	3.81	5.38	0.295	1.74
100 yr	6.18	11.48	0.635	3.74

Events for Subcatchment 11: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	14.06	0.652	0.98
2 yr	2.70	17.34	0.804	1.21
10 yr	3.81	30.16	1.411	2.12
100 yr	6.18	58.76	2.831	4.26

Events for Subcatchment 12: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	8.59	0.480	0.82
2 yr	2.70	10.89	0.603	1.03
10 yr	3.81	20.14	1.104	1.88
100 yr	6.18	41.52	2.309	3.94

Events for Subcatchment 13: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	6.41	0.359	0.82
2 yr	2.70	8.13	0.450	1.03
10 yr	3.81	15.04	0.825	1.88
100 yr	6.18	31.01	1.725	3.94

Events for Subcatchment 14: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	0.34	0.020	0.59
2 yr	2.70	0.46	0.026	0.77
10 yr	3.81	0.94	0.052	1.52
100 yr	6.18	2.13	0.117	3.43

Events for Subcatchment 15: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	4.53	0.258	0.72
2 yr	2.70	5.86	0.328	0.92
10 yr	3.81	11.28	0.619	1.74
100 yr	6.18	24.09	1.333	3.74

Events for Subcatchment 16: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	10.50	0.612	0.63
2 yr	2.70	13.88	0.789	0.82
10 yr	3.81	27.91	1.536	1.59
100 yr	6.18	61.86	3.407	3.53

Events for Subcatchment 17: Subarea

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1 yr	2.40	3.77	0.215	0.72
2 yr	2.70	4.88	0.273	0.92
10 yr	3.81	9.38	0.515	1.74
100 yr	6.18	20.04	1.108	3.74

Events for Pond 1B: Basin

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Volume (acre-feet)	Elevation (feet)	Storage (acre-feet)
1 yr	14.43	0.98	0.11	0.87	0.452	934.48	0.474
2 yr	18.14	1.28	0.12	1.16	0.621	934.78	0.586
10 yr	32.93	2.00	0.16	1.84	1.301	935.84	1.119
100 yr	66.94	5.66	0.24	5.42	2.524	937.46	2.350

Proposed_2023-003

Prepared by HP Inc.	
HydroCAD® 10.10-6a s/n 11025	© 2020 HydroCAD Software Solutions LLC

Events for Pond 2B: Basin

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Volume (acre-feet)	Elevation (feet)	Storage (acre-feet)
1 yr	3.38	0.96	0.37	0.59	0.187	931.39	0.119
2 yr	4.06	1.35	0.38	0.97	0.368	931.52	0.132
10 yr	7.47	2.51	0.42	2.09	1.115	931.84	0.167
100 yr	14.38	10.63	0.49	10.14	2.529	932.38	0.234

Events for Pond 3P: Pond

Event	Inflow	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	18.90	0.43	0.418	925.48	0.908
2 yr	23.09	2.33	0.656	925.63	0.959
10 yr	39.32	19.78	1.669	926.10	1.127
100 yr	75.32	36.55	4.142	927.84	1.822

Proposed_2023-003

Prepared by HP Inc.	
HydroCAD® 10.10-6a s/n 11025	© 2020 HydroCAD Software Solutions LLC

Events for Pond 4B: Basin

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Volume (acre-feet)	Elevation (feet)	Storage (acre-feet)
1 yr	4.65	1.05	1.05	0.00	0.000	936.14	0.080
2 yr	6.01	1.13	1.13	0.00	0.000	936.32	0.115
10 yr	11.57	1.51	1.51	0.00	0.000	937.08	0.271
100 yr	24.71	2.99	2.60	0.39	0.074	938.54	0.661

Events for Pond 5RG: Rain Garden

Event	Inflow	Outflow	Discarded	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	2.54	0.19	0.01	0.19	0.099	923.51	0.080
2 yr	3.32	0.24	0.01	0.23	0.139	923.86	0.104
10 yr	6.54	2.54	0.01	2.53	0.302	924.42	0.153
100 yr	14.21	13.06	0.01	13.05	0.704	924.80	0.194

Events for Pond 6P: Pond

Event	Inflow	Primary	Volume	Volume Elevation	
	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	12.26	0.37	0.352	912.56	0.513
2 yr	15.30	1.44	0.518	912.69	0.547
10 yr	27.46	13.29	1.293	913.06	0.650
100 yr	66.31	25.56	3.223	914.99	1.310
Events for Pond 7P: Pond

Event	Inflow (cfs)	Primary (cfs)	Volume (acre-feet)	Elevation (feet)	Storage (acre-feet)
1 yr	8.67	1.16	0.620	920.11	0.361
2 yr	13.64	1.56	0.812	920.33	0.475
10 yr	31.46	4.08	1.604	921.04	0.890
100 yr	66.09	12.97	3.520	922.28	1.829

Events for Pond 7RG: Rain Garden

Event	Inflow	Outflow	Discarded	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	6.76	3.79	0.02	3.77	0.291	922.35	0.112
2 yr	8.74	6.20	0.02	6.19	0.395	922.45	0.125
10 yr	16.82	15.45	0.02	15.43	0.827	922.71	0.160
100 yr	35.91	34.14	0.02	34.12	1.887	923.08	0.218

Events for Pond 8B: Basin

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Volume (acre-feet)	Elevation (feet)	Storage (acre-feet)
1 yr	4.88	0.16	0.01	0.15	0.127	917.29	0.187
2 yr	6.31	0.20	0.01	0.20	0.170	917.56	0.238
10 yr	12.15	0.33	0.01	0.32	0.292	918.66	0.474
100 yr	25.95	9.76	0.02	9.74	0.926	919.45	0.683

Events for Pond 9P: Pond

Event	Inflow	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	19.06	0.29	0.279	899.66	0.750
2 yr	23.51	0.35	0.321	900.07	0.953
10 yr	40.99	2.16	1.164	900.73	1.303
100 yr	79.95	8.76	3.663	902.93	2.697

Events for Pond 10B: Basin

Event	Inflow	Outflow	Discarded	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	2.16	0.09	0.09	0.00	0.000	911.88	0.073
2 yr	2.79	0.10	0.10	0.00	0.000	912.16	0.099
10 yr	5.38	0.12	0.12	0.00	0.000	912.89	0.208
100 yr	11.48	0.34	0.17	0.17	0.123	914.16	0.449

Events for Pond 11P: Pond

Event	Inflow	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	14.06	0.39	0.310	914.08	0.450
2 yr	17.34	0.85	0.439	914.31	0.517
10 yr	30.16	3.31	1.008	915.09	0.778
100 yr	58.76	15.76	2.395	916.48	1.332

Events for Pond 12P: Pond

Event	Inflow	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	8.59	0.31	0.289	923.89	0.309
2 yr	10.89	0.60	0.346	924.24	0.385
10 yr	20.14	8.01	0.797	924.59	0.470
100 yr	41.52	14.97	1.959	926.00	0.892

Events for Pond 13P: Pond

Event	Inflow	Primary	Volume	Elevation	Storage
	(cfs)	(cfs)	(acre-feet)	(feet)	(acre-feet)
1 yr	6.41	0.40	0.303	896.37	0.206
2 yr	8.13	0.46	0.367	896.65	0.268
10 yr	15.04	1.11	0.609	897.60	0.501
100 yr	31.01	9.41	1.425	898.69	0.824

Events for Link 1L: West Subwatershed

Event	Inflow	Primary	Volume
	(cfs)	(cfs)	(acre-feet)
1 yr	4.01	4.01	0.632
2 yr	5.15	5.15	0.929
10 yr	22.80	22.80	2.184
100 yr	52.33	52.33	5.250

Events for Link 2L: Northwest Subwatershed

Event	Inflow	Primary	Volume
	(cfs)	(cfs)	(acre-feet)
1 yr	0.58	0.58	0.323
2 yr	0.75	0.75	0.393
10 yr	1.38	1.38	0.661
100 yr	10.36	10.36	1.543

Events for Link 3L: North Subwatershed (drainage swale)

Event	Inflow	Primary	Volume
	(cfs)	(cfs)	(acre-feet)
1 yr	5.14	5.14	1.324
2 yr	6.56	6.56	1.802
10 yr	18.21	18.21	4.703
100 yr	67.12	67.12	12.002

Events for Link 4L: Southeast Subwatershed

Event	Inflow	Primary	Volume
	(cfs)	(cfs)	(acre-feet)
1 yr	10.98	10.98	1.584
2 yr	14.56	14.56	2.119
10 yr	30.27	30.27	4.432
100 yr	89.93	89.93	10.150

APPENDIX C Treatment Analysis

Treatment Analysis Results

FOR: Welshire Farm LOCATION: Town of Delafield, Wisconsin

Land Use	Total	BMP Type	BMP		Total Solids	% TSS
	Loading (lbs)		lbs IN	lbs OUT	Yield (lbs)	Removed
Subarea 1	2243	Bioretention Basin 1B and Disconnected roof/patios	2243	239	drains to 2B	89.3%
Subarea 2	506	Infiltration Basin 2B Disconnected roof/patios	746	484	484	35.1%
Subarea 3	4323	Pond 3P	4323	747	747	82.7%
Subarea 4	528	Infiltration Basin 4B and Disconnected roof/patios	528	0	0	100.0%
Subarea 5	312	Rain Garden 5B and Disconnected roof/patios	312	91	drains to 6P	70.8%
Subarea 6	2658	Pond 6P and Disconnected roof/patios	2750	501	501	81.8%
Subarea 7a	808	Rain Garden 7B and Disconnected roof/patios	808	186	drains to 7P	77.1%
Subarea 7b	1238	Pond 7P and Disconnected roof/patios	1423	212	212	85.1%
Subarea 8	515	Infiltration Basin 8B and Disconnected roof/patios	515	128	drains to 9P	75.1%
Subarea 9	3094	Pond 9P and Disconnected roof/patios	3222	259	259	92.0%
Subarea 10	225	Infiltration Basin 10B and Disconnected roof/patios	225	0	0	100.0%
Subarea 11	2530	Pond 11P	2530	414	414	83.6%
Subarea 12	1393	Infiltration Basin 12B and Disconnected roof/patios	1393	220	220	84.2%
Subarea 13	1084	Infiltration Basin 13B and Disconnected roof/patios	1084	164	164	84.9%
Subarea 14	51		51	51	51	0.0%
Subarea 15	341	Disconnection of roof/patios	341	165	165	51.5%
Subarea 16	1087	Disconnection of roof/patios	1087	838	838	22.9%
Subarea 17	288	Disconnection of roof/patios	288	164	164	43.0%
Total	23225				4219	81.8%

Connected Model Total lbs without Controls = **23225** Ibs (from WinSLAMM output)

Disconnected Model Total lbs with Controls = 4219 Ibs (from WinSLAMM output)

Total lbs Removed =

23225 - 4219 = 19006 lbs

% TSS Removed = 100 x (19006 / 23225) = 81.8 %

Treatment Analysis - Connected Model

SLAMM for Windows Version 10.4.1 (c) Copyright Robert Pitt and John Voorhees 2019, All Rights Reserved Data file name: D:\Jobs\2023\2023-003 - Thomas Farm - Welshire Farm -TRIO\Project_Information\Calcs\SLAMM\Treatment_Connected.mdb Data file description: Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Milwaukee WI 1969.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load % Reduction calculations Seed for random number generator: -42 Start of Winter Season: 12/06 End of Winter Season: 03/28 Model Run Start Date: 01/05/69 Model Run End Date: 12/31/69 Time of run: 14:07:31 Date of run: 06-21-2023 Total Area Modeled (acres): 110.280 Years in Model Run: 0.99

	Runoff	Percent	Particulate	Particulate	Percent
	Volume	Runoff	Solids	Solids	Particulate
	(cu ft)	Volume	Conc.	Yield	Solids
		Reduction	(mg/L)	(lbs)	Reduction
Total of all Land Uses without Controls:	3.435E+06	_	108.3	23225	_
Outfall Total with Controls:	2.834E+06	17.50%	30.07	5321	77.09%
Annualized Total After Outfall Controls:	2.874E+06			5395	

```
Data file name: D:\Jobs\2023\2023-003 - Thomas Farm - Welshire Farm -
TRIO\Project Information\Calcs\SLAMM\Treatment Connected.mdb
WinSLAMM Version 10.4.1
Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Milwaukee WI 1969.RAN
Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx
Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx
Residential Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std
Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std
Commercial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std
Industrial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std
Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std
Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std
Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False
Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI_GEO03.ppdx
Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv
Cost Data file name:
If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load
% Reduction calculations
Seed for random number generator: -42
Study period starting date: 01/05/69
                                           Study period ending date: 12/31/69
Start of Winter Season: 12/06
                                           End of Winter Season: 03/28
Date: 06-21-2023
                                           Time: 14:07:49
Site information:
LU# 1 - Residential: Subarea 1
                                   Total area (ac): 11.050
    1 - Roofs 1: 0.820 ac.
                               Pitched
                                          Connected
                                                       Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     2 - Roofs 2: 0.810 ac.
                               Pitched
                                          Connected
                                                       Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
    13 - Paved Parking 1: 0.010 ac.
                                        Connected
                                                     Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
    25 - Driveways 1: 0.080 ac.
                                    Connected
                                                Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
    26 - Driveways 2: 0.350 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
    31 - Sidewalks 1: 0.130 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
    32 - Sidewalks 2: 0.120 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     33 - Sidewalks 3: 0.230 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     37 - Streets 1: 0.620 ac.
                                  Smooth
                                            Street Length = 0.353 curb-mi
                                                                            Street Width (assuming two curb-
mi per street mile) = 28.98017 ft
                                      Annual Winter Load = 2500 lbs
           Default St. Dirt Accum.
                                                                       Source Area PSD File: C:\WinSLAMM
Files\NURP.cpz
```

51 - Small Landscaped Areas 1: 6.510 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 1.130 ac. Normal Clavey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.240 ac. Source Area PSD File: LU# 2 - Residential: Subarea 2 Total area (ac): 1.620 1 - Roofs 1: 0.150 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.140 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.160 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.020 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.020 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.200 ac. Smooth Street Length = 0.114 curb-mi Street Width (assuming two curbmi per street mile) = 28.94737 ft Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.840 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.090 ac. Source Area PSD File: LU# 3 - Residential: Subarea 3 Total area (ac): 13.360 1 - Roofs 1: 1.120 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 1.120 ac. Pitched Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 25 - Driveways 1: 0.680 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 26 - Driveways 2: 0.610 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.190 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.190 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.050 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.760 ac. Smooth Street Length = 1.001 curb-mi Street Width (assuming two curbmi per street mile) = 29.01099 ft Annual Winter Load = 2500 lbs Default St. Dirt Accum. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 7.390 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.050 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.200 ac. Source Area PSD File: LU# 4 - Residential: Subarea 4 Total area (ac): 4.390 1 - Roofs 1: 0.500 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Pitched 31 - Sidewalks 1: 0.080 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.630 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

70 - Water Body Areas: 0.180 ac. Source Area PSD File: Total area (ac): 2.590 LU# 5 - Residential: Subarea 5 1 - Roofs 1: 0.250 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.040 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.270 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.030 ac. Source Area PSD File: LU# 6 - Residential: Subarea 6 Total area (ac): 8.800 1 - Roofs 1: 0.360 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.350 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 13 - Paved Parking 1: 0.260 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.310 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.060 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.050 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.200 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.400 ac. Smooth Street Length = 0.797 curb-mi Street Width (assuming two curbmi per street mile) = 28.98369 ft Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 4.250 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 1.410 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.150 ac. Source Area PSD File: LU# 7 - Residential: Subarea 7b Total area (ac): 5.220 1 - Roofs 1: 0.390 ac. Pitched Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 2 - Roofs 2: 0.390 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.330 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.070 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.430 ac. Smooth Street Length = 0.245 curb-mi Street Width (assuming two curbmi per street mile) = 28.95918 ft Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.800 ac. Normal Clavey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.390 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.360 ac. Source Area PSD File: LU# 8 - Residential: Subarea 8 Total area (ac): 4.610

1 - Roofs 1: 0.470 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.080 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.170 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.940 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.790 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.160 ac. Source Area PSD File: LU# 9 - Residential: Subarea 9 Total area (ac): 10.820 1 - Roofs 1: 0.620 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.620 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.640 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.110 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.100 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.030 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.390 ac. Smooth Street Length = 0.791 curb-mi Street Width (assuming two curbmi per street mile) = 28.99494 ft Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Default St. Dirt Accum. Files\NURP.cpz 51 - Small Landscaped Areas 1: 6.900 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.410 ac. Source Area PSD File: LU# 10 - Residential: Subarea 10 Total area (ac): 2.040 1 - Roofs 1: 0.190 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.030 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 32 - Sidewalks 2: 0.030 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 1.500 ac. Normal Clavey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.160 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.130 ac. Source Area PSD File: LU# 11 - Residential: Subarea 11 Total area (ac): 7.980 1 - Roofs 1: 0.960 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.640 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.170 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.050 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.140 ac. Street Length = 0.649 curb-mi Street Width (assuming two curb-Smooth mi per street mile) = 28.98305 ft Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

51 - Small Landscaped Areas 1: 4.830 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.190 ac. Source Area PSD File: LU# 12 - Residential: Subarea 12 Total area (ac): 7.030 1 - Roofs 1: 0.440 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.430 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.290 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.070 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.190 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.400 ac. Smooth Street Length = 0.228 curb-mi Street Width (assuming two curbmi per street mile) = 28.94737 ft Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.960 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 1.060 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.130 ac. Source Area PSD File: LU# 13 - Residential: Subarea 13 Total area (ac): 5.250 1 - Roofs 1: 0.250 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.250 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.170 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.040 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.040 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.360 ac. Smooth Street Length = 0.205 curb-mi Street Width (assuming two curbmi per street mile) = 28.97561 ft Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.970 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.170 ac. Source Area PSD File: LU# 14 - Residential: Subarea 14 Total area (ac): 0.410 37 - Streets 1: 0.030 ac. Smooth Street Length = 0.017 curb-mi Street Width (assuming two curbmi per street mile) = 29.11765 ft Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.160 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

57 - Undeveloped Areas 1: 0.220 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 15 - Residential: Subarea 15 Total area (ac): 4.280 1 - Roofs 1: 0.340 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.180 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.060 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.130 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.020 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 1.230 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 2.320 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 16 - Residential: Subarea 16 Total area (ac): 10.890 1 - Roofs 1: 0.500 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.020 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.060 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 26 - Driveways 2: 0.160 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.080 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.030 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.330 ac. Smooth Street Length = 0.188 curb-mi Street Width (assuming two curbmi per street mile) = 28.96277 ft Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.370 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 6.340 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 17 - Residential: Subarea 17 Total area (ac): 3.560 1 - Roofs 1: 0.490 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.010 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.100 ac. Smooth Street Length = 5.689655E-02 curb-mi Street Width (assuming two curb-mi per street mile) = 29 ft Annual Winter Load = 2500 lbs Default St. Dirt Accum. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.220 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 2.680 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 18 - Residential: Subarea 7a Total area (ac): 6.380 1 - Roofs 1: 0.680 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.110 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

```
32 - Sidewalks 2: 0.210 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     51 - Small Landscaped Areas 1: 5.050 ac.
                                                 Normal Clayey
                                                                  Source Area PSD File: C:\WinSLAMM
Files\NURP.cpz
     57 - Undeveloped Areas 1: 0.330 ac.
                                            Normal Clayey
                                                             Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
      Control Practice 1: Wet Detention Pond CP# 1 (DS) - Pond 3
         Particle Size Distribution file name: Not needed - calculated by program
        Initial stage elevation (ft): 5
        Peak to Average Flow Ratio: 3.8
        Maximum flow allowed into pond (cfs): No maximum value entered
         Outlet Characteristics:
             Outlet type: Orifice 1
                    1. Orifice diameter (ft):
                                                 0.25
                    2. Number of orifices: 1
                     3. Invert elevation above datum (ft): 5
             Outlet type: Broad Crested Weir
                    1. Weir crest length (ft):
                                                 10
                    2. Weir crest width (ft):
                                                 10
                     3. Height from datum to bottom of weir opening:
                                                                      11
             Outlet type: Vertical Stand Pipe
                    1. Stand pipe diameter (ft): 4
                    2. Stand pipe height above datum (ft):
                                                              8.5
         Pond stage and surface area
                  Entry
                                        Pond Area
                                                    Natural Seepage
                                                                      Other Outflow
                              Stage
                  Number
                                        (acres)
                                                              (in/hr)
                                                                                       (cfs)
                               (ft)
                     0
                                 0.00
                                                               0.00
                                              0.0000
                                                                                        0.00
                     1
                                 0.01
                                                               0.00
                                                                                        0.00
                                              0.0500
                      2
                                 4.00
                                              0.1500
                                                               0.00
                                                                                        0.00
                      3
                                 5.00
                                                               0.00
                                              0.2000
                                                                                        0.00
                     4
                                                               0.00
                                 6.00
                                              0.2300
                                                                                        0.00
                     5
                                 7.00
                                              0.2700
                                                               0.00
                                                                                        0.00
                                 8.00
                                                               0.00
                                                                                        0.00
                      6
                                              0.3100
                      7
                                 9.00
                                              0.3600
                                                               0.00
                                                                                        0.00
                     8
                                 10.00
                                              0.4000
                                                                0.00
                                                                                         0.00
                      9
                                 11.00
                                              0.4500
                                                                0.00
                                                                                         0.00
                                  12.00
                                               0.5300
                                                                 0.00
                                                                                          0.00
                     10
```

Control Practice 2: Biofilter CP# 1 (DS) - Basin 4

```
1. Top area (square feet) = 31089
2. Bottom aea (square feet) = 7746
3. Depth (ft): 5
4. Biofilter width (ft) - for Cost Purposes Only: 10
5. Infiltration rate (in/hr) = 3.6
6. Random infiltration rate generation? No
7. Infiltration rate fraction (side): 0.001
8. Infiltration rate fraction (bottom): 1
9. Depth of biofilter that is rock filled (ft) 0
10. Porosity of rock filled volume = 0
11. Engineered soil infiltration rate: 3.6
12. Engineered soil depth (ft) = 1
13. Engineered soil porosity = 0.27
14. Percent solids reduction due to flow through engineered soil = 0
15. Biofilter peak to average flow ratio = 3.8
16. Number of biofiltration control devices = 1
17. Particle size distribution file: Not needed - calculated by program
18. Initial water surface elevation (ft): 0
Soil Data
                               Soil Type Fraction in Eng. Soil
    User-Defined Soil Type
                                 1.000
     Saturation water content percent (Porosity) = 0
    Field capacity (\%) = 0
    Permanent Wilting Point (%) = 0
     Infiltration rate (in/hr) = 3.6
Biofilter Outlet/Discharge Characteristics:
    Outlet type: Broad Crested Weir
           1. Weir crest length (ft): 10
           2. Weir crest width (ft):
                                      10
           3. Height of datum to bottom of weir opening: 4
    Outlet type: Vertical Stand Pipe
           1. Stand pipe diameter (ft): 3
           2. Stand pipe height above datum (ft): 3.75
    Outlet type: Surface Discharge Pipe
           1. Surface discharge pipe outlet diameter (ft):
                                                            0.33
           2. Pipe invert elevation above datum (ft): 2.5
           3. Number of surface pipe outlets: 1
```

Control Practice 3: Biofilter CP# 2 (DS) - Basin 5

```
1. Top area (square feet) = 8150
2. Bottom aea (square feet) = 1446
3. Depth (ft): 5
4. Biofilter width (ft) - for Cost Purposes Only: 10
5. Infiltration rate (in/hr) = 0.07
6. Random infiltration rate generation? No
7. Infiltration rate fraction (side): 0.001
8. Infiltration rate fraction (bottom): 1
9. Depth of biofilter that is rock filled (ft) 0
10. Porosity of rock filled volume = 0
11. Engineered soil infiltration rate: 0.07
12. Engineered soil depth (ft) = 1
13. Engineered soil porosity = 0.27
14. Percent solids reduction due to flow through engineered soil = 80
15. Biofilter peak to average flow ratio = 3.8
16. Number of biofiltration control devices = 1
17. Particle size distribution file: Not needed - calculated by program
18. Initial water surface elevation (ft): 0
Soil Data
                               Soil Type Fraction in Eng. Soil
    User-Defined Soil Type
                                 1.000
     Saturation water content percent (Porosity) = 0
    Field capacity (\%) = 0
    Permanent Wilting Point (%) = 0
     Infiltration rate (in/hr) = 0.07
Biofilter Outlet/Discharge Characteristics:
    Outlet type: Broad Crested Weir
           1. Weir crest length (ft): 10
           2. Weir crest width (ft):
                                      10
           3. Height of datum to bottom of weir opening: 4
    Outlet type: Vertical Stand Pipe
           1. Stand pipe diameter (ft): 3
           2. Stand pipe height above datum (ft): 3.25
    Outlet type: Surface Discharge Pipe
           1. Surface discharge pipe outlet diameter (ft): 0.25
           2. Pipe invert elevation above datum (ft): 1.75
           3. Number of surface pipe outlets: 1
```

Control Practice 4: Wet Detention Pond CP# 2 (DS) - Pond 6

```
Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft):
                                 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft): 0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft):
                                         10
              3. Height from datum to bottom of weir opening:
                                                              10
       Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 4
              2. Stand pipe height above datum (ft): 7.6
  Pond stage and surface area
            Entrv
                        Stage
                                 Pond Area
                                             Natural Seepage
                                                              Other Outflow
            Number
                        (ft)
                                 (acres)
                                                      (in/hr)
                                                                              (cfs)
               0
                           0.00
                                      0.0000
                                                        0.00
                                                                                0.00
                          0.01
                                                        0.00
                                                                                0.00
               1
                                      0.0100
               2
                          4.00
                                      0.1000
                                                        0.00
                                                                                0.00
               3
                          5.00
                                      0.1500
                                                        0.00
                                                                                0.00
               4
                          7.00
                                                        0.00
                                                                                0.00
                                      0.2300
               5
                           9.00
                                                        0.00
                                                                                0.00
                                      0.3400
               6
                          11.00
                                       0.4700
                                                         0.00
                                                                                 0.00
Control Practice 5: Wet Detention Pond CP# 3 (DS) - Pond 7
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft): 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Sharp Crested Weir
              1. Sharp crested weir length (ft): 1
              2. Sharp crested weir height from invert: 3.1
              3. Sharp crested weir invert elevation above datum (ft):
                                                                        5.9
       Outlet type: Orifice 1
```

1. Orifice diameter (ft): 0.67 2. Number of orifices: 1 3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 8 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 7.2 Pond stage and surface area Entry Pond Area Natural Seepage Other Outflow Stage Number (in/hr) (cfs) (ft) (acres) 0 0.00 0.0000 0.00 0.00 1 0.01 0.1500 0.00 0.00 2 4.00 0.3000 0.00 0.00 3 5.00 0.00 0.00 0.3900 8.00 0.00 0.00 4 0.8700 5 9.00 1.1700 0.00 0.00 Control Practice 6: Biofilter CP# 3 (DS) - Basin 8 1. Top area (square feet) = 200572. Bottom aea (square feet) = 70553. Depth (ft): 5 4. Biofilter width (ft) - for Cost Purposes Only: 10 5. Infiltration rate (in/hr) = 0.046. Random infiltration rate generation? No 7. Infiltration rate fraction (side): 0.001 8. Infiltration rate fraction (bottom): 1 9. Depth of biofilter that is rock filled (ft) 0 10. Porosity of rock filled volume = 0 11. Engineered soil infiltration rate: 0.04 12. Engineered soil depth (ft) = 113. Engineered soil porosity = 0.2714. Percent solids reduction due to flow through engineered soil = 80 15. Biofilter peak to average flow ratio = 3.8 16. Number of biofiltration control devices = 1 17. Particle size distribution file: Not needed - calculated by program

```
18. Initial water surface elevation (ft): 0
  Soil Data
                                  Soil Type Fraction in Eng. Soil
      User-Defined Soil Type
                                   1.000
       Saturation water content percent (Porosity) = 0
       Field capacity (\%) = 0
       Permanent Wilting Point (%) = 0
       Infiltration rate (in/hr) = 0.04
  Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 4
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft): 3.5
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 0.25
              2. Pipe invert elevation above datum (ft): 1.25
              3. Number of surface pipe outlets: 1
Control Practice 7: Wet Detention Pond CP# 4 (DS) - Pond 9
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft):
                                 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft): 0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Orifice 2
              1. Orifice diameter (ft): 1
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 7
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height from datum to bottom of weir opening: 10
```

Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 9.75 Pond stage and surface area Pond Area Natural Seepage Other Outflow Entry Stage Number (ft) (in/hr) (cfs) (acres) 0 0.00 0.00 0.0000 0.00 1 0.01 0.00 0.00 0.1500 2 4.00 0.00 0.3500 0.00 3 5.00 0.4100 0.00 0.00 4 6.00 0.4600 0.00 0.00 5 8.00 0.5600 0.00 0.00 6 10.00 0.7400 0.00 0.00 7 11.00 0.8100 0.00 0.00 Control Practice 8: Biofilter CP# 4 (DS) - Basin 10 1. Top area (square feet) = 124322. Bottom aea (square feet) = 54803. Depth (ft): 6 4. Biofilter width (ft) - for Cost Purposes Only: 10 5. Infiltration rate (in/hr) = 0.56. Random infiltration rate generation? No 7. Infiltration rate fraction (side): 0.001 8. Infiltration rate fraction (bottom): 1 9. Depth of biofilter that is rock filled (ft) 0 10. Porosity of rock filled volume = 0 11. Engineered soil infiltration rate: 0.5 12. Engineered soil depth (ft) = 213. Engineered soil porosity = 0.2714. Percent solids reduction due to flow through engineered soil = 80 15. Biofilter peak to average flow ratio = 3.8 16. Number of biofiltration control devices = 1 17. Particle size distribution file: Not needed - calculated by program 18. Initial water surface elevation (ft): 0 Soil Type Fraction in Eng. Soil Soil Data 1.000 User-Defined Soil Type Saturation water content percent (Porosity) = 0 Field capacity (%) = 0

Permanent Wilting Point (%) = 0 Infiltration rate (in/hr) = 0.5Biofilter Outlet/Discharge Characteristics: Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height of datum to bottom of weir opening: 5 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 4.5 Outlet type: Surface Discharge Pipe 1. Surface discharge pipe outlet diameter (ft): 0.25 2. Pipe invert elevation above datum (ft): 3.5 3. Number of surface pipe outlets: 1 Control Practice 9: Wet Detention Pond CP# 5 (DS) - Pond 11 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 5 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered Outlet Characteristics: Outlet type: Sharp Crested Weir 1. Sharp crested weir length (ft): 1 2. Sharp crested weir height from invert: 3.5 3. Sharp crested weir invert elevation above datum (ft): 6.8 Outlet type: Orifice 1 1. Orifice diameter (ft): 0.25 2. Number of orifices: 1 3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 9.3 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 8.3 Pond stage and surface area Entry Stage Pond Area Natural Seepage Other Outflow

Number	(ft)	(acres)	(in/hr)	(cfs)
0	0.00	0.0000	0.00	0.00
1	0.01	0.0500	0.00	0.00
2	4.00	0.1200	0.00	0.00
3	5.00	0.1900	0.00	0.00
4	7.80	0.3500	0.00	0.00
5	9.80	0.4800	0.00	0.00
6	10.30	0.5200	0.00	0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

```
Control Practice 10: Wet Detention Pond CP# 6 (DS) - Pond 12
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft): 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft):
                                           0.25
              2. Number of orifices:
                                       1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft):
                                           10
              2. Weir crest width (ft):
                                           10
              3. Height from datum to bottom of weir opening:
                                                                9
       Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft):
                                                       7.2
  Pond stage and surface area
                                                                Other Outflow
            Entry
                        Stage
                                  Pond Area
                                              Natural Seepage
            Number
                        (ft)
                                  (acres)
                                                       (in/hr)
                                                                                (cfs)
               0
                           0.00
                                       0.0000
                                                         0.00
               1
                           0.10
                                       0.0100
                                                         0.00
               2
                           4.00
                                                         0.00
                                       0.1000
               3
                           5.00
                                       0.1300
                                                         0.00
               4
                           6.00
                                                         0.00
                                       0.1600
               5
                                                         0.00
                           9.00
                                       0.3500
```

0.4200

0.00

Control Practice 11: Wet Detention Pond CP# 7 (DS) - Pond 13

10.00

6

Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 5 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered Outlet Characteristics: Outlet type: Sharp Crested Weir 1. Sharp crested weir length (ft): 1 2. Sharp crested weir height from invert: 2.5 3. Sharp crested weir invert elevation above datum (ft): 7 Outlet type: Orifice 1 1. Orifice diameter (ft): 0.33 2. Number of orifices: 1 3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 8.5 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 8 Pond stage and surface area Pond Area Natural Seepage Other Outflow Entry Stage Number (ft) (acres) (in/hr) 0 0.00 0.00 0.0000 1 0.01 0.00 0.0300 2 4.00 0.00 0.1000 3 5.00 0.00 0.1700 4 5.70 0.2000 0.00 5 6.70 0.00 0.2400 0.00 6 7.70 0.2900 7 8.50 0.3300 0.00 8 9.50 0.00 0.3800 Control Practice 12: Biofilter CP# 5 (DS) - Basin 1 1. Top area (square feet) = 58153

(cfs)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

- 2. Bottom aea (square feet) = 9693
- 3. Depth (ft): 8
- 4. Biofilter width (ft) for Cost Purposes Only: 10

```
5. Infiltration rate (in/hr) = 0.11
6. Random infiltration rate generation? No
7. Infiltration rate fraction (side): 0.001
8. Infiltration rate fraction (bottom): 1
9. Depth of biofilter that is rock filled (ft) 1
10. Porosity of rock filled volume = 0.33
11. Engineered soil infiltration rate: 3.6
12. Engineered soil depth (ft) = 2
13. Engineered soil porosity = 0.27
14. Percent solids reduction due to flow through engineered soil = 80
15. Biofilter peak to average flow ratio = 3.8
16. Number of biofiltration control devices = 1
17. Particle size distribution file: Not needed - calculated by program
18. Initial water surface elevation (ft): 0
Soil Data
                                Soil Type Fraction in Eng. Soil
    User-Defined Soil Type
                                 1.000
     Saturation water content percent (Porosity) = 0
    Field capacity (\%) = 0
    Permanent Wilting Point (%) = 0
     Infiltration rate (in/hr) = 3.6
Biofilter Outlet/Discharge Characteristics:
    Outlet type: Broad Crested Weir
           1. Weir crest length (ft): 10
           2. Weir crest width (ft): 10
           3. Height of datum to bottom of weir opening: 7
    Outlet type: Vertical Stand Pipe
           1. Stand pipe diameter (ft): 3
           2. Stand pipe height above datum (ft):
                                                    6.75
    Outlet type: Surface Discharge Pipe
           1. Surface discharge pipe outlet diameter (ft):
                                                            0.5
           2. Pipe invert elevation above datum (ft): 3.5
           3. Number of surface pipe outlets: 1
    Outlet type: Drain Tile/Underdrain
           1. Underdrain outlet diameter (ft): 0.33
           2. Invert elevation above datum (ft): 0.75
           3. Number of underdrain outlets: 1
```

Control Practice 13: Biofilter CP# 6 (DS) - Basin 2

```
1. Top area (square feet) = 7377
  2. Bottom aea (square feet) = 4102
  3. Depth (ft): 5
  4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 1.63
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
  9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 1.63
  12. Engineered soil depth (ft) = 3
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 0
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                            0
  Soil Data
                                  Soil Type Fraction in Eng. Soil
      Sands
                                    0.750
      Compost as Amendment
                                    0.250
  Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 4
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 1
              2. Pipe invert elevation above datum (ft): 3
              3. Number of surface pipe outlets: 1
Control Practice 14: Biofilter CP# 7 (DS) - Basin 7
  1. Top area (square feet) = 7720
  2. Bottom aea (square feet) = 2687
  3. Depth (ft): 3
  4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 0.11
  6. Random infiltration rate generation? No
```

```
7. Infiltration rate fraction (side): 1
8. Infiltration rate fraction (bottom): 1
9. Depth of biofilter that is rock filled (ft) 0
10. Porosity of rock filled volume = 0
11. Engineered soil infiltration rate: 0.11
12. Engineered soil depth (ft) = 1
13. Engineered soil porosity = 0.27
14. Percent solids reduction due to flow through engineered soil = 80
15. Biofilter peak to average flow ratio = 3.8
16. Number of biofiltration control devices = 1
17. Particle size distribution file: Not needed - calculated by program
18. Initial water surface elevation (ft): 0
                               Soil Type Fraction in Eng. Soil
Soil Data
    User-Defined Soil Type
                                 1.000
     Saturation water content percent (Porosity) = 0
     Field capacity (%) = 0
     Permanent Wilting Point (%) = 0
     Infiltration rate (in/hr) = 0.11
Biofilter Outlet/Discharge Characteristics:
    Outlet type: Broad Crested Weir
           1. Weir crest length (ft):
                                        8
           2. Weir crest width (ft): 10
            3. Height of datum to bottom of weir opening: 1.75
```

Treatment Analysis - Disconnected Model

SLAMM for Windows Version 10.5.0 (c) Copyright Robert Pitt and John Voorhees 2019, All Rights Reserved Data file name: C:\Data\Jobs\2023\2023-003 - Thomas Farm - Welshire Farm -TRIO\Project_Information\Calcs\SLAMM\Treatment_Disconnected.mdb Data file description: Rain file name: C:\WinSLAMM Files\Rain Files\WisReq - Milwaukee WI 1969.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI_GE003.ppdx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load % Reduction calculations Seed for random number generator: -42 Start of Winter Season: 12/06 End of Winter Season: 03/28 Model Run Start Date: 01/05/69 Model Run End Date: 12/31/69 Date of run: 12-21-2023 Time of run: 16:28:45 Total Area Modeled (acres): 110.280 Years in Model Run: 0.99

	Runoff	Percent	Particulate	Particulate	Percent
	Volume	Runoff	Solids	Solids	Particulate
	(cu ft)	Volume	Conc.	Yield	Solids
		Reduction	(mg/L)	(lbs)	Reduction
Total of all Land Uses without Controls:	2.576E+06	_	129.3	20784	_
Outfall Total with Controls:	2.232E+06	13.35%	30.28	4219	79.70%
Annualized Total After Outfall Controls:	2.263E+06			4278	

```
Data file name: C:\Data\Jobs\2023\2023-003 - Thomas Farm - Welshire Farm -
TRIO\Project_Information\Calcs\SLAMM\Treatment_Disconnected.mdb
WinSLAMM Version 10.5.0
Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Milwaukee WI 1969.RAN
Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx
Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx
Residential Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std
Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std
Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std
Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std
Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std
Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std
Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False
Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI_GEO03.ppdx
Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv
Cost Data file name:
If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load
% Reduction calculations
Seed for random number generator: -42
Study period starting date: 01/05/69
                                           Study period ending date: 12/31/69
Start of Winter Season: 12/06
                                           End of Winter Season: 03/28
Date: 12-21-2023
                                           Time: 16:28:54
Site information:
LU# 1 - Residential: Subarea 1
                                   Total area (ac): 11.050
    1 - Roofs 1: 0.820 ac.
                               Pitched
                                          Connected
                                                       Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     2 - Roofs 2: 0.810 ac.
                               Pitched
                                          Disconnected
                                                          Normal Clavev
                                                                          Low Densitv
                                                                                         Source Area PSD
File: C:\WinSLAMM Files\NURP.cpz
    13 - Paved Parking 1: 0.010 ac.
                                        Connected
                                                     Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     25 - Driveways 1: 0.080 ac.
                                    Connected
     26 - Driveways 2: 0.350 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     31 - Sidewalks 1: 0.130 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     32 - Sidewalks 2: 0.120 ac.
                                    Disconnected
                                                    Normal Clayey
                                                                    Low Density
                                                                                   Source Area PSD File:
C:\WinSLAMM Files\NURP.cpz
     33 - Sidewalks 3: 0.230 ac.
                                    Disconnected
                                                    Normal Clayey
                                                                   Low Density
                                                                                   Source Area PSD File:
C:\WinSLAMM Files\NURP.cpz
     37 - Streets 1: 0.620 ac.
                                  Smooth
                                            Street Length = 0.1765 mi
                                                                        Street Width = 28.98017 ft
Street Edges = 2
```

Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 6.510 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 1.130 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.240 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 2 - Residential: Subarea 2 Total area (ac): 1.620 1 - Roofs 1: 0.150 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.140 ac. Pitched Normal Clayey Low Density Source Area PSD Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.160 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.020 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.020 ac. Disconnected Normal Clavev Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.200 ac. Smooth Street Length = 0.057 mi Street Width = 28.94737 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.840 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.090 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 3 - Residential: Subarea 3 Total area (ac): 13.360 1 - Roofs 1: 1.120 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 1.120 ac. Pitched Normal Clayey Low Density Source Area PSD Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.680 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 26 - Driveways 2: 0.610 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 31 - Sidewalks 1: 0.190 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.190 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.050 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.760 ac. Street Length = 0.5005 mi Street Width = 29.01099 ft Smooth Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

51 - Small Landscaped Areas 1: 7.390 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.050 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use 70 - Water Body Areas: 0.200 ac. LU# 4 - Residential: Subarea 4 Total area (ac): 4.390 1 - Roofs 1: 0.500 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.080 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.630 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.180 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 5 - Residential: Subarea 5 Total area (ac): 2.590 1 - Roofs 1: 0.250 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.040 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.270 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.030 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 6 - Residential: Subarea 6 Total area (ac): 8.800 1 - Roofs 1: 0.360 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.350 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 13 - Paved Parking 1: 0.260 ac. Connected 25 - Driveways 1: 0.310 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.060 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 32 - Sidewalks 2: 0.050 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 33 - Sidewalks 3: 0.200 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.400 ac. Street Width = 28.98369 ft Smooth Street Length = 0.3985 mi Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 4.250 ac. Normal Clavey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

57 - Undeveloped Areas 1: 1.410 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.150 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 7 - Residential: Subarea 7b Total area (ac): 5.220 1 - Roofs 1: 0.390 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.390 ac. Normal Clayey Low Density Pitched Source Area PSD Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.330 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.070 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.430 ac. Smooth Street Length = 0.1225 mi Street Width = 28.95918 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.800 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.390 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.360 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 8 - Residential: Subarea 8 Total area (ac): 4.610 1 - Roofs 1: 0.470 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.080 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.170 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.940 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.790 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.160 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 9 - Residential: Subarea 9 Total area (ac): 10.820 1 - Roofs 1: 0.620 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.620 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.640 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.110 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

Normal Clavey 32 - Sidewalks 2: 0.100 ac. Disconnected Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.030 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.390 ac. Smooth Street Length = 0.3955 mi Street Width = 28.99494 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 6.900 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.410 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 10 - Residential: Subarea 10 Total area (ac): 2.040 1 - Roofs 1: 0.190 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.030 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.030 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 1.500 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.160 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.130 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 11 - Residential: Subarea 11 Total area (ac): 7.980 1 - Roofs 1: 0.960 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.640 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.170 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.050 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 37 - Streets 1: 1.140 ac. Smooth Street Length = 0.3245 mi Street Width = 28.98305 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 4.830 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.190 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 12 - Residential: Subarea 12 Total area (ac): 7.030

1 - Roofs 1: 0.440 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

2 - Roofs 2: 0.430 ac. Pitched Disconnected Normal Clavey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.290 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.070 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.190 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.400 ac. Smooth Street Length = 0.114 mi Street Width = 28.94737 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.960 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 1.060 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.130 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use Total area (ac): 5.250 LU# 13 - Residential: Subarea 13 1 - Roofs 1: 0.250 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.250 ac. Pitched Normal Clayey Low Density Source Area PSD Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.170 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.040 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.040 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.360 ac. Smooth Street Length = 0.1025 mi Street Width = 28.97561 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.970 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.170 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 14 - Residential: Subarea 14 Total area (ac): 0.410 37 - Streets 1: 0.030 ac. Smooth Street Length = 0.0085 mi Street Width = 29.11765 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

51 - Small Landscaped Areas 1: 0.160 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.220 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 15 - Residential: Subarea 15 Total area (ac): 4.280 1 - Roofs 1: 0.340 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.180 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.060 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.130 ac. Disconnected Normal Clayey Low Densitv Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.020 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 1.230 ac. Normal Clavey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 2.320 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 16 - Residential: Subarea 16 Total area (ac): 10.890 1 - Roofs 1: 0.500 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.020 ac. Low Density Source Area PSD Pitched Normal Clayey Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.060 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 26 - Driveways 2: 0.160 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.080 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.030 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.330 ac. Smooth Street Length = 0.094 mi Street Width = 28.96277 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.370 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

57 - Undeveloped Areas 1: 6.340 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 17 - Residential: Subarea 17 Total area (ac): 3.560 1 - Roofs 1: 0.490 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.010 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.100 ac. Smooth Street Length = 2.844828E-02 mi Street Width = 29 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.220 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 2.680 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 18 - Residential: Subarea 7a Total area (ac): 6.380 1 - Roofs 1: 0.680 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.110 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.210 ac. Disconnected Low Density Source Area PSD File: Normal Clayey C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 5.050 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.330 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Control Practice 1: Wet Detention Pond CP# 1 (DS) - Pond 3 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 5 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered Outlet Characteristics: Outlet type: Orifice 1 1. Orifice diameter (ft): 0.25 2. Number of orifices: 1

3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir

1. Weir crest length (ft): 10

2. Weir crest width (ft): 10

3. Height from datum to bottom of weir opening: 11

Outlet type: Vertical Stand Pipe

1. Stand pipe diameter (ft): 4

2. Stand pipe height above datum (ft): 8.5

Pond stage and surface area

Stage	Pond Area	Natural Seepage	Other Outflow	
(ft)	(acres)	(in/hr)		(cfs)
0.00	0.0000	0.00		0.00
0.01	0.0500	0.00		0.00
4.00	0.1500	0.00		0.00
5.00	0.2000	0.00		0.00
6.00	0.2300	0.00		0.00
7.00	0.2700	0.00		0.00
8.00	0.3100	0.00		0.00
9.00	0.3600	0.00		0.00
10.00	0.400	0.00		0.00
11.00	0.450	0.00		0.00
12.00	0.53	0.00)	0.00
	Stage (ft) 0.00 0.01 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00	Stage Pond Area (ft) (acres) 0.00 0.0000 0.01 0.0500 4.00 0.1500 5.00 0.2000 6.00 0.2300 7.00 0.2700 8.00 0.3100 9.00 0.400 11.00 0.450 12.00 0.53	Stage Pond Area Natural Seepage (ft) (acres) (in/hr) 0.00 0.0000 0.00 0.01 0.0500 0.00 4.00 0.1500 0.00 5.00 0.2000 0.00 6.00 0.2300 0.00 7.00 0.2700 0.00 8.00 0.3100 0.00 9.00 0.3600 0.00 10.00 0.4000 0.00 12.00 0.5300 0.00	Stage Pond Area Natural Seepage Other Outflow (ft) (acres) (in/hr) 0.00 0.0000 0.00 0.01 0.0500 0.00 4.00 0.1500 0.00 5.00 0.2000 0.00 6.00 0.2300 0.00 7.00 0.2700 0.00 8.00 0.3100 0.00 9.00 0.3600 0.00 11.00 0.4500 0.00 12.00 0.5300 0.00

Control Practice 2: Biofilter CP# 1 (DS) - Basin 4
1. Top area (square feet) = 31089
2. Bottom aea (square feet) = 7746
3. Depth (ft): 5
4. Biofilter width (ft) - for Cost Purposes Only: 10
5. Infiltration rate (in/hr) = 3.6
6. Random infiltration rate generation? No
7. Infiltration rate fraction (side): 0.001
8. Infiltration rate fraction (bottom): 1
9. Depth of biofilter that is rock filled (ft) 0
10. Porosity of rock filled volume = 0
11. Engineered soil infiltration rate: 3.6
12. Engineered soil depth (ft) = 1
13. Engineered soil porosity = 0.27

14. Percent solids reduction due to flow through engineered soil = 0

```
15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
       Saturation water content (Porosity) =
                                              0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 3.6
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening:
                                                            4
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft):
                                                       3.75
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft):
                                                               0.33
              2. Pipe invert elevation above datum (ft): 2.5
              3. Number of surface pipe outlets: 1
Control Practice 3: Biofilter CP# 2 (DS) - Basin 5
  1. Top area (square feet) = 8150
  2. Bottom aea (square feet) = 1446
  3. Depth (ft):
                   5
  4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 0.07
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
  9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.07
  12. Engineered soil depth (ft) = 1
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 80
```

```
15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
       Saturation water content (Porosity) = 0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 0.07
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 4
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft):
                                                      3.25
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 0.25
              2. Pipe invert elevation above datum (ft): 1.75
              3. Number of surface pipe outlets: 1
Control Practice 4: Wet Detention Pond CP# 2 (DS) - Pond 6
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft):
                                 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft):
                                          0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height from datum to bottom of weir opening: 10
       Outlet type: Vertical Stand Pipe
```

```
1. Stand pipe diameter (ft):
                                             4
              2. Stand pipe height above datum (ft):
                                                       7.6
  Pond stage and surface area
            Entry
                                 Pond Area Natural Seepage Other Outflow
                        Stage
            Number
                        (ft)
                                 (acres)
                                                      (in/hr)
                                                                              (cfs)
               0
                           0.00
                                      0.0000
                                                        0.00
                                                                                0.00
               1
                           0.01
                                      0.0100
                                                        0.00
                                                                                0.00
               2
                           4.00
                                                        0.00
                                      0.1000
                                                                                0.00
               3
                           5.00
                                      0.1500
                                                        0.00
                                                                                0.00
               4
                           7.00
                                      0.2300
                                                        0.00
                                                                                0.00
               5
                           9.00
                                      0.3400
                                                        0.00
                                                                                0.00
               6
                           11.00
                                       0.4700
                                                         0.00
                                                                                 0.00
Control Practice 5: Wet Detention Pond CP# 3 (DS) - Pond 7
   Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft):
                                 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Sharp Crested Weir
              1. Sharp crested weir length (ft):
                                                  1
              2. Sharp crested weir height from invert:
                                                         3.1
              3. Sharp crested weir invert elevation above datum (ft): 5.9
       Outlet type: Orifice 1
              1. Orifice diameter (ft):
                                          0.67
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height from datum to bottom of weir opening: 8
       Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft):
                                             3
              2. Stand pipe height above datum (ft):
                                                       7.2
  Pond stage and surface area
            Entry
                                 Pond Area
                                             Natural Seepage Other Outflow
                        Stage
            Number
                        (ft)
                                 (acres)
                                                      (in/hr)
                                                                              (cfs)
               0
                           0.00
                                      0.0000
                                                        0.00
                                                                                0.00
```

1	0.01	0.1500	0.00	0.00
2	4.00	0.3000	0.00	0.00
3	5.00	0.3900	0.00	0.00
4	8.00	0.8700	0.00	0.00
5	9.00	1.1700	0.00	0.00

```
Control Practice 6: Biofilter CP# 3 (DS) - Basin 8
  1. Top area (square feet) = 20057
  2. Bottom aea (square feet) = 7055
  3. Depth (ft): 5
  4. Biofilter width (ft) - for Cost Purposes Only:
                                                    10
  5. Infiltration rate (in/hr) = 0.04
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
   9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.04
  12. Engineered soil depth (ft) = 1
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 80
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1,000
       Saturation water content (Porosity) =
                                            0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 0.04
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 4
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
```

```
2. Stand pipe height above datum (ft):
                                                       3.5
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 0.25
              2. Pipe invert elevation above datum (ft): 1.25
              3. Number of surface pipe outlets:
                                                  1
Control Practice 7: Wet Detention Pond CP# 4 (DS) - Pond 9
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft): 5
  Peak to Average Flow Ratio:
                                3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft): 0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Orifice 2
              1. Orifice diameter (ft): 1
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 7
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height from datum to bottom of weir opening:
                                                               10
       Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft):
                                             3
              2. Stand pipe height above datum (ft):
                                                       9.75
  Pond stage and surface area
            Entrv
                        Stage
                                  Pond Area
                                             Natural Seepage
                                                               Other Outflow
            Number
                        (ft)
                                                      (in/hr)
                                                                               (cfs)
                                  (acres)
               0
                           0.00
                                      0.0000
                                                        0.00
                                                                                0.00
               1
                           0.01
                                      0.1500
                                                        0.00
                                                                                0.00
               2
                           4.00
                                      0.3500
                                                        0.00
                                                                                0.00
               3
                           5.00
                                                        0.00
                                      0.4100
                                                                                0.00
               4
                           6.00
                                      0.4600
                                                        0.00
                                                                                0.00
               5
                           8.00
                                                        0.00
                                                                                0.00
                                      0.5600
               6
                           10.00
                                       0.7400
                                                         0.00
                                                                                 0.00
               7
                           11.00
                                       0.8100
                                                         0.00
                                                                                 0.00
```

```
Control Practice 8: Biofilter CP# 4 (DS) - Basin 10
  1. Top area (square feet) = 12432
  2. Bottom aea (square feet) = 5480
  3. Depth (ft):
                   6
  4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 0.5
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
   9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.5
  12. Engineered soil depth (ft) = 2
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 80
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
       Saturation water content (Porosity) =
                                            0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 0.5
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 5
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft):
                                             3
              2. Stand pipe height above datum (ft):
                                                      4.5
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 0.25
              2. Pipe invert elevation above datum (ft): 3.5
              3. Number of surface pipe outlets: 1
```

```
Control Practice 9: Wet Detention Pond CP# 5 (DS) - Pond 11
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft):
                                 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Sharp Crested Weir
              1. Sharp crested weir length (ft): 1
              2. Sharp crested weir height from invert:
                                                        3.5
              3. Sharp crested weir invert elevation above datum (ft): 6.8
       Outlet type: Orifice 1
              1. Orifice diameter (ft):
                                          0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft):
                                          10
              3. Height from datum to bottom of weir opening:
                                                               9.3
       Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft):
                                             3
              2. Stand pipe height above datum (ft): 8.3
  Pond stage and surface area
            Entry
                        Stage
                                 Pond Area
                                             Natural Seepage
                                                              Other Outflow
            Number
                                                      (in/hr)
                        (ft)
                                 (acres)
                                                                              (cfs)
               0
                           0.00
                                      0.0000
                                                        0.00
                                                                                0.00
               1
                           0.01
                                      0.0500
                                                        0.00
                                                                                0.00
               2
                          4.00
                                      0.1200
                                                       0.00
                                                                                0.00
               3
                           5.00
                                      0.1900
                                                       0.00
                                                                                0.00
               4
                          7.80
                                                       0.00
                                      0.3500
                                                                                0.00
               5
                           9.80
                                      0.4800
                                                        0.00
                                                                                0.00
               6
                           10.30
                                       0.5200
                                                        0.00
                                                                                 0.00
Control Practice 10: Wet Detention Pond CP# 6 (DS) - Pond 12
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft): 5
```

```
Peak to Average Flow Ratio: 3.8
```

Maximum flow allowed into pond (cfs): No maximum value entered

```
Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft): 0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height from datum to bottom of weir opening: 9
       Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft):
                                                      7.2
  Pond stage and surface area
            Entry
                       Stage
                                 Pond Area Natural Seepage Other Outflow
            Number
                        (ft)
                                                     (in/hr)
                                 (acres)
                                                                              (cfs)
               0
                          0.00
                                      0.0000
                                                       0.00
                                                                               0.00
               1
                          0.10
                                      0.0100
                                                       0.00
                                                                               0.00
               2
                          4.00
                                      0.1000
                                                       0.00
                                                                               0.00
               3
                          5.00
                                      0.1300
                                                       0.00
                                                                               0.00
               4
                          6.00
                                      0.1600
                                                       0.00
                                                                               0.00
               5
                          9.00
                                      0.3500
                                                       0.00
                                                                               0.00
               6
                          10.00
                                       0.4200
                                                        0.00
                                                                                0.00
Control Practice 11: Wet Detention Pond CP# 7 (DS) - Pond 13
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft):
                                 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Sharp Crested Weir
              1. Sharp crested weir length (ft):
                                                 1
              2. Sharp crested weir height from invert:
                                                        2.5
              3. Sharp crested weir invert elevation above datum (ft): 7
       Outlet type: Orifice 1
              1. Orifice diameter (ft): 0.33
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
```

1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 8.5 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 8 Pond stage and surface area Entry Stage Pond Area Natural Seepage Other Outflow Number (ft) (acres) (in/hr) (cfs) 0 0.00 0.0000 0.00 0.00 1 0.01 0.0300 0.00 0.00 2 4.00 0.1000 0.00 0.00 3 5.00 0.1700 0.00 0.00 4 5.70 0.2000 0.00 0.00 5 6.70 0.2400 0.00 0.00 6 7.70 0.2900 0.00 0.00 7 8.50 0.00 0.3300 0.00 8 9.50 0.3800 0.00 0.00 Control Practice 12: Biofilter CP# 5 (DS) - Basin 1 1. Top area (square feet) = 581532. Bottom aea (square feet) = 96933. Depth (ft): 8 4. Biofilter width (ft) - for Cost Purposes Only: 10 5. Infiltration rate (in/hr) = 0.116. Random infiltration rate generation? No 7. Infiltration rate fraction (side): 0.001 8. Infiltration rate fraction (bottom): 1 9. Depth of biofilter that is rock filled (ft) 1 10. Porosity of rock filled volume = 0.3311. Engineered soil infiltration rate: 3.6 12. Engineered soil depth (ft) = 213. Engineered soil porosity = 0.2714. Percent solids reduction due to flow through engineered soil = 80 15. Biofilter peak to average flow ratio = 3.8 16. Number of biofiltration control devices = 1 17. Particle size distribution file: Not needed - calculated by program 18. Initial water surface elevation (ft): 0

```
Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
       Saturation water content (Porosity) =
                                              0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 3.6
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 7
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft):
              2. Stand pipe height above datum (ft):
                                                      6.75
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft):
                                                               0.5
              2. Pipe invert elevation above datum (ft): 3.5
              3. Number of surface pipe outlets: 1
      Outlet type: Drain Tile/Underdrain
              1. Underdrain outlet diameter (ft):
                                                   0.33
              2. Invert elevation above datum (ft): 0.75
              3. Number of underdrain outlets: 1
Control Practice 13: Biofilter CP# 6 (DS) - Basin 2
  1. Top area (square feet) = 7377
  2. Bottom aea (square feet) = 4102
  3. Depth (ft):
                   5
  4. Biofilter width (ft) - for Cost Purposes Only:
                                                     10
  5. Infiltration rate (in/hr) = 1.63
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
  9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 1.63
  12. Engineered soil depth (ft) = 3
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 0
```

```
15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      Sand
                                              0.750
      Compost
                                              0.250
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 4
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 1
              2. Pipe invert elevation above datum (ft): 3
              3. Number of surface pipe outlets:
                                                  1
Control Practice 14: Biofilter CP# 7 (DS) - Basin 7
  1. Top area (square feet) = 7720
  2. Bottom aea (square feet) = 2687
   3. Depth (ft): 3
   4. Biofilter width (ft) - for Cost Purposes Only: 10
   5. Infiltration rate (in/hr) = 0.11
   6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 1
   8. Infiltration rate fraction (bottom): 1
   9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.11
  12. Engineered soil depth (ft) = 1
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 80
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
```

```
Saturation water content (Porosity) = 0

Field capacity (fraction) = 0

Permanent Wilting Point (fraction) = 0

Infiltration rate (in/hr) = 0.11

Biofilter Outlet/Discharge Characteristics:

Outlet type: Broad Crested Weir

1. Weir crest length (ft): 8

2. Wair grout width (ft): 10
```

- 2. Weir crest width (ft): 10
- 3. Height of datum to bottom of weir opening: 1.75

APPENDIX D Infiltration Analysis

Infiltration Analysis Results

FOR: Welshire Farm LOCATION: Town of Delafield, Wisconsin

Pre-Development					
Project Site	151.05	acres	=	6,579,738	sq-ft
Average Annual Rainfall	29.02	inches	=	2.42	feet
Total Rainfall Volume	15,912,000	cu-ft			
Total Runoff (from SLAMM Output)	1,694,305	cu-ft			
Total Pre-Development Infiltration Volume	14,217,695	cu-ft			

Post-Development			
Total Runoff (from SLAMM Output)	2,539,000	cu-ft	
Total Post-Development Infiltration Volume	13,373,000	cu-ft	

Percent Infiltrated	
Post Infiltration Vol / Pre Infiltration Vol	94.1%

Infiltration Analysis - Pre-Development

Data File: C:\Data\Jobs\2023\2023-003 - Thomas Farm - Welshire Farm - TRIO\Project_Information\Calcs\SLAMM\Pre-Development.mdb Rain File: WisReg - Milwaukee WI 1969.RAN Date: 12-21-23 Time: 4:29:49 PM Site Description:

Runoff Volume Total (cf) at the Outfall

Rain Number	Rain Total (in)	Outfall Total (cf)	Total Losses (in.)	Calculated CN*	Event Peak Flow (cfs)	Pre-Dev Runoff Vol. (cf)
Minimum:	0	0	0.01	74.1	0	0
Maximum:	1.96	196287	1.6	99.6	27.422	317661
Average:	0.25	8915	0.23	76.5	10.811	47064
Total:	29.02	1.03E+06	27.12			1694305

Data file name: C:\Data\Jobs\2023\2023-003 - Thomas Farm - Welshire Farm -TRIO\Project_Information\Calcs\SLAMM\Pre-Development.mdb WinSLAMM Version 10.5.0 Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Milwaukee WI 1969.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI_GE003.ppdx Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load % Reduction calculations Seed for random number generator: -42 Study period starting date: 01/05/69 Study period ending date: 12/31/69 Start of Winter Season: 12/06 End of Winter Season: 03/28 Date: 12-21-2023 Time: 16:11:41 Site information: Pre-Development Area Description Pre-Development Area (ac) Pre-Development CN cropland 92.150 83 impervious .720 98 lawn 4.130 80 woods 54.050 77 Total Area (ac)/Composite CN 151.050 81 LU# 1 - Residential: Subarea 1 Total area (ac): 11.870 45 - Large Landscaped Areas 1: 11.870 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 2 - Residential: Subarea 2 Total area (ac): 14.480 45 - Large Landscaped Areas 1: 14.480 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 3 - Residential: Subarea 3 Total area (ac): 4.560

45 - Large Landscaped Areas 1: 4.560 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 4 - Residential: Subarea 4 Total area (ac): 1.100 45 - Large Landscaped Areas 1: 1.100 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 5 - Residential: Subarea 5 Total area (ac): 28.780 45 - Large Landscaped Areas 1: 28.780 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 6 - Residential: Subarea 6 Total area (ac): 10.750 45 - Large Landscaped Areas 1: 10.750 ac. Source Area PSD File: C:\WinSLAMM Normal Clavev Files\NURP.cpz LU# 7 - Residential: Subarea 7 Total area (ac): 12.630 45 - Large Landscaped Areas 1: 12.630 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 8 - Residential: Subarea 8 Total area (ac): 26.110 1 - Roofs 1: 0.200 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.520 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 45 - Large Landscaped Areas 1: 25.390 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 9 - Residential: Subarea 9 - Undisturbed Total area (ac): 40.770 57 - Undeveloped Areas 1: 40.770 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Control Practice 1: Biofilter CP# 1 (DS) - Depression 1 1. Top area (square feet) = 1906282. Bottom aea (square feet) = 19166 3. Depth (ft): 2 4. Biofilter width (ft) - for Cost Purposes Only: 10 5. Infiltration rate (in/hr) = 0.046. Random infiltration rate generation? No 7. Infiltration rate fraction (side): 0.001 8. Infiltration rate fraction (bottom): 1 9. Depth of biofilter that is rock filled (ft) 0 10. Porosity of rock filled volume = 0 11. Engineered soil infiltration rate: 0.04 12. Engineered soil depth (ft) = 0

```
13. Engineered soil porosity = 0
  14. Percent solids reduction due to flow through engineered soil = 0
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 50
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 1.5
Control Practice 2: Biofilter CP# 2 (DS) - Depression 6
  1. Top area (square feet) = 55025
  2. Bottom aea (square feet) = 200
   3. Depth (ft): 1.1
   4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 0.07
   6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
   9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.07
  12. Engineered soil depth (ft) = 0
  13. Engineered soil porosity = 0
  14. Percent solids reduction due to flow through engineered soil = 0
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 8
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 0.5
```

```
Control Practice 3: Biofilter CP# 3 (DS) - Depression 7
  1. Top area (square feet) = 29349
  2. Bottom aea (square feet) = 100
  3. Depth (ft): 1.1
  4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 0.07
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
  9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.07
  12. Engineered soil depth (ft) = 0
  13. Engineered soil porosity = 0
  14. Percent solids reduction due to flow through engineered soil = 0
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 8
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 0.5
```

Infiltration Analysis - Post-Development

SLAMM for Windows Version 10.5.0 (c) Copyright Robert Pitt and John Voorhees 2019, All Rights Reserved Data file name: C:\Data\Jobs\2023\2023-003 - Thomas Farm - Welshire Farm -TRIO\Project_Information\Calcs\SLAMM\Proposed Disconnected.mdb Data file description: Rain file name: C:\WinSLAMM Files\Rain Files\WisReq - Milwaukee WI 1969.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI_GE003.ppdx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load % Reduction calculations Seed for random number generator: -42 Start of Winter Season: 12/06 End of Winter Season: 03/28 Model Run Start Date: 01/05/69 Model Run End Date: 12/31/69 Date of run: 12-21-2023 Time of run: 16:18:00 Total Area Modeled (acres): 151.050 Years in Model Run: 0.99

	Runoff	Percent	Particulate	Particulate	Percent
	Volume	Runoff	Solids	Solids	Particulate
	(cu ft)	Volume	Conc.	Yield	Solids
		Reduction	(mg/L)	(lbs)	Reduction
Total of all Land Uses without Controls:	2.882E+06	_	117.2	21090	_
Outfall Total with Controls:	2.539E+06	11.90%	28.55	4525	78.54%
Annualized Total After Outfall Controls:	2.574E+06			4588	

```
Data file name: C:\Data\Jobs\2023\2023-003 - Thomas Farm - Welshire Farm -
TRIO\Project_Information\Calcs\SLAMM\Proposed_Disconnected.mdb
WinSLAMM Version 10.5.0
Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Milwaukee WI 1969.RAN
Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx
Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx
Residential Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std
Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std
Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std
Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std
Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std
Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std
Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False
Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI_GEO03.ppdx
Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv
Cost Data file name:
If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load
% Reduction calculations
Seed for random number generator: -42
Study period starting date: 01/05/69
                                           Study period ending date: 12/31/69
Start of Winter Season: 12/06
                                           End of Winter Season: 03/28
Date: 12-21-2023
                                           Time: 16:18:09
Site information:
LU# 1 - Residential: Subarea 1
                                   Total area (ac): 11.050
    1 - Roofs 1: 0.820 ac.
                               Pitched
                                          Connected
                                                       Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     2 - Roofs 2: 0.810 ac.
                               Pitched
                                          Disconnected
                                                          Normal Clavev
                                                                          Low Densitv
                                                                                         Source Area PSD
File: C:\WinSLAMM Files\NURP.cpz
    13 - Paved Parking 1: 0.010 ac.
                                        Connected
                                                     Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     25 - Driveways 1: 0.080 ac.
                                    Connected
     26 - Driveways 2: 0.350 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     31 - Sidewalks 1: 0.130 ac.
                                    Connected
                                                 Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
     32 - Sidewalks 2: 0.120 ac.
                                    Disconnected
                                                    Normal Clayey
                                                                    Low Density
                                                                                   Source Area PSD File:
C:\WinSLAMM Files\NURP.cpz
     33 - Sidewalks 3: 0.230 ac.
                                    Disconnected
                                                    Normal Clayey
                                                                   Low Density
                                                                                   Source Area PSD File:
C:\WinSLAMM Files\NURP.cpz
     37 - Streets 1: 0.620 ac.
                                  Smooth
                                            Street Length = 0.1765 mi
                                                                        Street Width = 28.98017 ft
Street Edges = 2
```

Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 6.510 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 1.130 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.240 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 2 - Residential: Subarea 2 Total area (ac): 1.620 1 - Roofs 1: 0.150 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.140 ac. Pitched Normal Clayey Low Density Source Area PSD Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.160 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.020 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.020 ac. Disconnected Normal Clavev Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.200 ac. Smooth Street Length = 0.057 mi Street Width = 28.94737 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.840 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.090 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 3 - Residential: Subarea 3 Total area (ac): 13.360 1 - Roofs 1: 1.120 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 1.120 ac. Pitched Normal Clayey Low Density Source Area PSD Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.680 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 26 - Driveways 2: 0.610 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 31 - Sidewalks 1: 0.190 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.190 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.050 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.760 ac. Street Length = 0.5005 mi Street Width = 29.01099 ft Smooth Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

51 - Small Landscaped Areas 1: 7.390 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.050 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use 70 - Water Body Areas: 0.200 ac. LU# 4 - Residential: Subarea 4 Total area (ac): 4.390 1 - Roofs 1: 0.500 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.080 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.630 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.180 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 5 - Residential: Subarea 5 Total area (ac): 2.590 1 - Roofs 1: 0.250 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.040 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.270 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.030 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 6 - Residential: Subarea 6 Total area (ac): 8.800 1 - Roofs 1: 0.360 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.350 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 13 - Paved Parking 1: 0.260 ac. Connected 25 - Driveways 1: 0.310 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.060 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 32 - Sidewalks 2: 0.050 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 33 - Sidewalks 3: 0.200 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.400 ac. Street Width = 28.98369 ft Smooth Street Length = 0.3985 mi Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 4.250 ac. Normal Clavey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

57 - Undeveloped Areas 1: 1.410 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.150 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 7 - Residential: Subarea 7b Total area (ac): 5.220 1 - Roofs 1: 0.390 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.390 ac. Normal Clayey Low Density Pitched Source Area PSD Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.330 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.070 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.430 ac. Smooth Street Length = 0.1225 mi Street Width = 28.95918 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.800 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.390 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.360 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 8 - Residential: Subarea 8 Total area (ac): 4.610 1 - Roofs 1: 0.470 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.080 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.170 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 2.940 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.790 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.160 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 9 - Residential: Subarea 9 Total area (ac): 10.820 1 - Roofs 1: 0.620 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.620 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.640 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.110 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
Normal Clavey 32 - Sidewalks 2: 0.100 ac. Disconnected Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.030 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 1.390 ac. Smooth Street Length = 0.3955 mi Street Width = 28.99494 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 6.900 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.410 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 10 - Residential: Subarea 10 Total area (ac): 2.040 1 - Roofs 1: 0.190 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.030 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.030 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 1.500 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.160 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.130 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 11 - Residential: Subarea 11 Total area (ac): 7.980 1 - Roofs 1: 0.960 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.640 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.170 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.050 ac. Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Connected 37 - Streets 1: 1.140 ac. Smooth Street Length = 0.3245 mi Street Width = 28.98305 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 4.830 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.190 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 12 - Residential: Subarea 12 Total area (ac): 7.030

1 - Roofs 1: 0.440 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

2 - Roofs 2: 0.430 ac. Pitched Disconnected Normal Clavey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.290 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.070 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.190 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.400 ac. Smooth Street Length = 0.114 mi Street Width = 28.94737 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.960 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 1.060 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.130 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use Total area (ac): 5.250 LU# 13 - Residential: Subarea 13 1 - Roofs 1: 0.250 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.250 ac. Pitched Normal Clayey Low Density Source Area PSD Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.170 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.040 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.040 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.360 ac. Smooth Street Length = 0.1025 mi Street Width = 28.97561 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.970 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.170 ac. Source Area PSD File: C:\WinSLAMM Files\\Residential Land Use LU# 14 - Residential: Subarea 14 Total area (ac): 0.410 37 - Streets 1: 0.030 ac. Smooth Street Length = 0.0085 mi Street Width = 29.11765 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

51 - Small Landscaped Areas 1: 0.160 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.220 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 15 - Residential: Subarea 15 Total area (ac): 4.280 1 - Roofs 1: 0.340 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.180 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.060 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.130 ac. Disconnected Normal Clayey Low Densitv Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 33 - Sidewalks 3: 0.020 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 1.230 ac. Normal Clavey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 2.320 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 16 - Residential: Subarea 16 Total area (ac): 10.890 1 - Roofs 1: 0.500 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 2 - Roofs 2: 0.020 ac. Low Density Source Area PSD Pitched Normal Clayey Disconnected File: C:\WinSLAMM Files\NURP.cpz 25 - Driveways 1: 0.060 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 26 - Driveways 2: 0.160 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.080 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.030 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.330 ac. Smooth Street Length = 0.094 mi Street Width = 28.96277 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 3.370 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

57 - Undeveloped Areas 1: 6.340 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 17 - Residential: Subarea 17 Total area (ac): 3.560 1 - Roofs 1: 0.490 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.010 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.060 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 37 - Streets 1: 0.100 ac. Smooth Street Length = 2.844828E-02 mi Street Width = 29 ft Street Edges = 2Default St. Dirt Accum. Annual Winter Load = 2500 lbs Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.220 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 2.680 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 18 - Residential: Subarea 18 - Undisturbed Total area (ac): 40.770 57 - Undeveloped Areas 1: 40.770 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz LU# 19 - Residential: Subarea 7a Total area (ac): 6.380 1 - Roofs 1: 0.680 ac. Pitched Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.110 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 32 - Sidewalks 2: 0.210 ac. Disconnected Normal Clayey Low Density Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 5.050 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 57 - Undeveloped Areas 1: 0.330 ac. Normal Clayey Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Control Practice 1: Wet Detention Pond CP# 1 (DS) - Pond 3 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 5 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered Outlet Characteristics:

Outlet type: Orifice 1 1. Orifice diameter (ft): 0.25 2. Number of orifices: 1 3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 11 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 4 2. Stand pipe height above datum (ft): 8.5 Pond stage and surface area Entry Stage Pond Area Natural Seepage Other Outflow Number (ft) (acres) (in/hr) 0 0.00 0.0000 0.00 1 0.01 0.0500 0.00 2 4.00 0.00 0.1500 3 5.00 0.2000 0.00 4 6.00 0.00 0.2300 5 7.00 0.2700 0.00 6 8.00 0.3100 0.00 7 9.00 0.3600 0.00 8 10.00 0.00 0.4000 9 11.00 0.4500 0.00 10 12.00 0.5300 0.00 Control Practice 2: Biofilter CP# 1 (DS) - Basin 4 1. Top area (square feet) = 310892. Bottom aea (square feet) = 77463. Depth (ft): 5 4. Biofilter width (ft) - for Cost Purposes Only: 10 5. Infiltration rate (in/hr) = 3.66. Random infiltration rate generation? No 7. Infiltration rate fraction (side): 0.001 8. Infiltration rate fraction (bottom): 1 9. Depth of biofilter that is rock filled (ft) 0 10. Porosity of rock filled volume = 0 11. Engineered soil infiltration rate: 3.6

(cfs)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

```
12. Engineered soil depth (ft) = 1
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 0
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
       Saturation water content (Porosity) =
                                            0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 3.6
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening:
                                                            4
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft):
                                                      3.75
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 0.33
              2. Pipe invert elevation above datum (ft): 2.5
              3. Number of surface pipe outlets: 1
Control Practice 3: Biofilter CP# 2 (DS) - Basin 5
  1. Top area (square feet) = 8150
  2. Bottom aea (square feet) = 1446
  3. Depth (ft): 5
  4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 0.07
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
  9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.07
```

```
12. Engineered soil depth (ft) = 1
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 80
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
       Saturation water content (Porosity) = 0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 0.07
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening:
                                                            4
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft):
                                                       3.25
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 0.25
              2. Pipe invert elevation above datum (ft): 1.75
              3. Number of surface pipe outlets: 1
Control Practice 4: Wet Detention Pond CP# 2 (DS) - Pond 6
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft): 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft):
                                          0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
```

2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 10 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 4 2. Stand pipe height above datum (ft): 7.6 Pond stage and surface area Entry Stage Pond Area Natural Seepage Other Outflow Number (ft) (acres) (in/hr) (cfs) 0 0.00 0.0000 0.00 0.00 1 0.01 0.0100 0.00 0.00 2 4.00 0.1000 0.00 0.00 3 5.00 0.1500 0.00 0.00 4 7.00 0.2300 0.00 0.00 5 9.00 0.3400 0.00 0.00 6 11.00 0.00 0.00 0.4700 Control Practice 5: Wet Detention Pond CP# 3 (DS) - Pond 7 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 5 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered Outlet Characteristics: Outlet type: Sharp Crested Weir 1. Sharp crested weir length (ft): 1 2. Sharp crested weir height from invert: 3.1 3. Sharp crested weir invert elevation above datum (ft): 5.9 Outlet type: Orifice 1 1. Orifice diameter (ft): 0.67 2. Number of orifices: 1 3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 8 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 7.2 Pond stage and surface area

Entry	Stage	Pond Area	Natural Seepage	Other Outflow	
Number	(ft)	(acres)	(in/hr)		(cfs)
0	0.00	0.0000	0.00		0.00
1	0.01	0.1500	0.00		0.00
2	4.00	0.3000	0.00		0.00
3	5.00	0.3900	0.00		0.00
4	8.00	0.8700	0.00		0.00
5	9.00	1.1700	0.00		0.00

Control Practice 6: Biofilter CP# 3 (DS) - Basin 8 1. Top area (square feet) = 200572. Bottom aea (square feet) = 70553. Depth (ft): 5 4. Biofilter width (ft) - for Cost Purposes Only: 10 5. Infiltration rate (in/hr) = 0.046. Random infiltration rate generation? No 7. Infiltration rate fraction (side): 0.001 8. Infiltration rate fraction (bottom): 1 9. Depth of biofilter that is rock filled (ft) 0 10. Porosity of rock filled volume = 011. Engineered soil infiltration rate: 0.04 12. Engineered soil depth (ft) = 113. Engineered soil porosity = 0.2714. Percent solids reduction due to flow through engineered soil = 80 15. Biofilter peak to average flow ratio = 3.8 16. Number of biofiltration control devices = 1 17. Particle size distribution file: Not needed - calculated by program 18. Initial water surface elevation (ft): 0 Soil Type Fraction in Eng. Soil Soil Data User-Defined Media Type 1.000 Saturation water content (Porosity) = 0 Field capacity (fraction) = 0 Permanent Wilting Point (fraction) = 0 Infiltration rate (in/hr) = 0.04Biofilter Outlet/Discharge Characteristics: Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10

```
3. Height of datum to bottom of weir opening: 4
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft): 3.5
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 0.25
              2. Pipe invert elevation above datum (ft): 1.25
              3. Number of surface pipe outlets: 1
Control Practice 7: Wet Detention Pond CP# 4 (DS) - Pond 9
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft): 5
  Peak to Average Flow Ratio:
                               3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft): 0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Orifice 2
              1. Orifice diameter (ft): 1
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 7
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height from datum to bottom of weir opening:
                                                              10
       Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft):
                                                      9.75
  Pond stage and surface area
            Entry
                       Stage
                                 Pond Area Natural Seepage Other Outflow
            Number
                        (ft)
                                 (acres)
                                                     (in/hr)
                                                                             (cfs)
               0
                          0.00
                                      0.0000
                                                       0.00
                                                                               0.00
               1
                          0.01
                                      0.1500
                                                       0.00
                                                                               0.00
               2
                          4.00
                                      0.3500
                                                       0.00
                                                                               0.00
               3
                          5.00
                                      0.4100
                                                       0.00
                                                                               0.00
               4
                          6.00
                                      0.4600
                                                       0.00
                                                                               0.00
```

```
5
                           8.00
                                      0.5600
                                                        0.00
                                                                                0.00
               6
                                                         0.00
                                                                                 0.00
                           10.00
                                       0.7400
               7
                           11.00
                                       0.8100
                                                         0.00
                                                                                 0.00
Control Practice 8: Biofilter CP# 4 (DS) - Basin 10
  1. Top area (square feet) = 12432
  2. Bottom aea (square feet) = 5480
   3. Depth (ft):
                  6
   4. Biofilter width (ft) - for Cost Purposes Only: 10
   5. Infiltration rate (in/hr) = 0.5
   6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
   8. Infiltration rate fraction (bottom): 1
   9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.5
  12. Engineered soil depth (ft) = 2
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 80
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
       Saturation water content (Porosity) =
                                              0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 0.5
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft):
                                          10
              3. Height of datum to bottom of weir opening: 5
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft):
                                             3
              2. Stand pipe height above datum (ft):
                                                       4.5
      Outlet type: Surface Discharge Pipe
```

1. Surface discharge pipe outlet diameter (ft): 0.25 2. Pipe invert elevation above datum (ft): 3.5 3. Number of surface pipe outlets: 1 Control Practice 9: Wet Detention Pond CP# 5 (DS) - Pond 11 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 5 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered Outlet Characteristics: Outlet type: Sharp Crested Weir 1. Sharp crested weir length (ft): 1 2. Sharp crested weir height from invert: 3.5 3. Sharp crested weir invert elevation above datum (ft): 6.8 Outlet type: Orifice 1 1. Orifice diameter (ft): 0.25 2. Number of orifices: 1 3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 9.3 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 8.3 Pond stage and surface area Entry Pond Area Natural Seepage Other Outflow Stage Number (in/hr) (ft) (acres) (cfs) 0 0.00 0.0000 0.00 0.00 0.01 0.00 1 0.0500 0.00 2 4.00 0.1200 0.00 0.00 3 5.00 0.1900 0.00 0.00 4 7.80 0.3500 0.00 0.00 5 9.80 0.00 0.00 0.4800 6 10.30 0.5200 0.00 0.00

Control Practice 10: Wet Detention Pond CP# 6 (DS) - Pond 12

Particle Size Distribution file name: Not needed - calculated by program

```
Initial stage elevation (ft): 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Orifice 1
              1. Orifice diameter (ft):
                                          0.25
              2. Number of orifices: 1
              3. Invert elevation above datum (ft): 5
       Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height from datum to bottom of weir opening: 9
       Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft): 7.2
  Pond stage and surface area
                                 Pond Area Natural Seepage
                                                              Other Outflow
            Entry
                        Stage
            Number
                        (ft)
                                                      (in/hr)
                                                                              (cfs)
                                 (acres)
               0
                          0.00
                                      0.0000
                                                       0.00
                                                                                0.00
               1
                          0.10
                                      0.0100
                                                       0.00
                                                                                0.00
               2
                          4.00
                                      0.1000
                                                       0.00
                                                                                0.00
               3
                          5.00
                                      0.1300
                                                       0.00
                                                                                0.00
               4
                          6.00
                                                       0.00
                                                                                0.00
                                      0.1600
               5
                           9.00
                                      0.3500
                                                       0.00
                                                                                0.00
               6
                          10.00
                                       0.4200
                                                        0.00
                                                                                0.00
Control Practice 11: Wet Detention Pond CP# 7 (DS) - Pond 13
  Particle Size Distribution file name: Not needed - calculated by program
  Initial stage elevation (ft): 5
  Peak to Average Flow Ratio: 3.8
  Maximum flow allowed into pond (cfs): No maximum value entered
  Outlet Characteristics:
       Outlet type: Sharp Crested Weir
              1. Sharp crested weir length (ft):
                                                 1
              2. Sharp crested weir height from invert:
                                                         2.5
              3. Sharp crested weir invert elevation above datum (ft): 7
       Outlet type: Orifice 1
              1. Orifice diameter (ft): 0.33
```

2. Number of orifices: 1 3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 8.5 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3 2. Stand pipe height above datum (ft): 8 Pond stage and surface area Entry Stage Pond Area Natural Seepage Other Outflow Number (ft) (in/hr) (cfs) (acres) 0 0.00 0.0000 0.00 0.00 1 0.01 0.0300 0.00 0.00 2 4.00 0.00 0.00 0.1000 3 5.00 0.1700 0.00 0.00 0.2000 4 5.70 0.00 0.00 5 6.70 0.2400 0.00 0.00 6 7.70 0.00 0.2900 0.00 7 8.50 0.3300 0.00 0.00 8 9.50 0.3800 0.00 0.00 Control Practice 12: Biofilter CP# 5 (DS) - Basin 1 1. Top area (square feet) = 581532. Bottom aea (square feet) = 96933. Depth (ft): 8 4. Biofilter width (ft) - for Cost Purposes Only: 10 5. Infiltration rate (in/hr) = 0.116. Random infiltration rate generation? No 7. Infiltration rate fraction (side): 0.001 8. Infiltration rate fraction (bottom): 1 9. Depth of biofilter that is rock filled (ft) 1 10. Porosity of rock filled volume = 0.3311. Engineered soil infiltration rate: 3.6 12. Engineered soil depth (ft) = 213. Engineered soil porosity = 0.2714. Percent solids reduction due to flow through engineered soil = 80 15. Biofilter peak to average flow ratio = 3.8

```
16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      User-Defined Media Type
                                              1.000
       Saturation water content (Porosity) =
                                            0
       Field capacity (fraction) = 0
       Permanent Wilting Point (fraction) =
                                             0
       Infiltration rate (in/hr) = 3.6
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening: 7
      Outlet type: Vertical Stand Pipe
              1. Stand pipe diameter (ft): 3
              2. Stand pipe height above datum (ft):
                                                      6.75
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 0.5
              2. Pipe invert elevation above datum (ft): 3.5
              3. Number of surface pipe outlets: 1
      Outlet type: Drain Tile/Underdrain
              1. Underdrain outlet diameter (ft):
                                                   0.33
              2. Invert elevation above datum (ft): 0.75
              3. Number of underdrain outlets: 1
Control Practice 13: Biofilter CP# 6 (DS) - Basin 2
  1. Top area (square feet) = 7377
  2. Bottom aea (square feet) = 4102
  3. Depth (ft): 5
  4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 1.63
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 0.001
  8. Infiltration rate fraction (bottom): 1
  9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 1.63
```

```
12. Engineered soil depth (ft) = 3
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 0
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
  18. Initial water surface elevation (ft):
                                             0
       Soil Data
                                       Soil Type Fraction in Eng. Soil
      Sand
                                              0.750
                                              0.250
      Compost
       Biofilter Outlet/Discharge Characteristics:
      Outlet type: Broad Crested Weir
              1. Weir crest length (ft): 10
              2. Weir crest width (ft): 10
              3. Height of datum to bottom of weir opening:
                                                             4
      Outlet type: Surface Discharge Pipe
              1. Surface discharge pipe outlet diameter (ft): 1
              2. Pipe invert elevation above datum (ft): 3
              3. Number of surface pipe outlets: 1
Control Practice 14: Biofilter CP# 7 (DS) - Basin 7
  1. Top area (square feet) = 7720
  2. Bottom aea (square feet) = 2687
  3. Depth (ft): 3
  4. Biofilter width (ft) - for Cost Purposes Only: 10
  5. Infiltration rate (in/hr) = 0.11
  6. Random infiltration rate generation? No
  7. Infiltration rate fraction (side): 1
  8. Infiltration rate fraction (bottom): 1
  9. Depth of biofilter that is rock filled (ft) 0
  10. Porosity of rock filled volume = 0
  11. Engineered soil infiltration rate: 0.11
  12. Engineered soil depth (ft) = 1
  13. Engineered soil porosity = 0.27
  14. Percent solids reduction due to flow through engineered soil = 80
  15. Biofilter peak to average flow ratio = 3.8
  16. Number of biofiltration control devices = 1
  17. Particle size distribution file: Not needed - calculated by program
```

```
18. Initial water surface elevation (ft):
                                          0
    Soil Data
                                    Soil Type Fraction in Eng. Soil
   User-Defined Media Type
                                           1.000
    Saturation water content (Porosity) = 0
    Field capacity (fraction) = 0
    Permanent Wilting Point (fraction) =
                                          0
    Infiltration rate (in/hr) = 0.11
    Biofilter Outlet/Discharge Characteristics:
   Outlet type: Broad Crested Weir
           1. Weir crest length (ft): 8
           2. Weir crest width (ft): 10
           3. Height of datum to bottom of weir opening: 1.75
```

APPENDIX E Soil Survey and Soil Boring Logs

USDA Natural Resources

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BsA	Brookston silt loam, 0 to 2 percent slopes	C/D	9.4	6.0%
HmB	Hochheim loam, 2 to 6 percent slopes	D	18.7	12.1%
HmC2	Hochheim loam, 6 to 12 percent slopes, eroded	D	16.9	10.9%
KIA	Kendall silt loam, 1 to 3 percent slopes	С	1.4	0.9%
KwA	Knowles silt loam, 0 to 2 percent slopes	С	8.6	5.6%
KwB	Knowles silt loam, 2 to 6 percent slopes	С	17.0	11.0%
LmB	Lamartine silt loam, 0 to 3 percent slopes	B/D	5.2	3.3%
Lu	Loamy land	D	1.9	1.2%
МоВ	Mayville silt loam, 2 to 6 percent slopes	С	0.9	0.6%
RkB	Ritchey silt loam, 1 to 6 percent slopes	D	11.2	7.2%
RkE	Ritchey silt loam, 12 to 30 percent slopes	D	1.5	1.0%
ThA	Theresa silt loam, 0 to 2 percent slopes	С	20.6	13.2%
ThB	Theresa silt loam, 2 to 6 percent slopes	С	26.1	16.8%
ThB2	Theresa silt loam, 2 to 6 percent slopes, eroded	С	15.7	10.1%
Totals for Area of Intere	est		155.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

GEOTECHNICAL ENGINEERING REPORT

Thomas Farm Development NWC Golf Road and Elmhurst Road Town of Delafield, Wisconsin

GESTRA Project No.: 23083-10 May 15, 2023

Prepared For: Neumann Developments, Inc. N27W24025 Paul Court, Suite 100 Pewaukee, WI 53072

Geotechnical Engineering Report

Thomas Farm Development NWC Golf Road and Elmhurst Road Town of Delafield, Wisconsin

GESTRA Project No. 23083-10 May 15, 2023

Prepared For:

Neumann Developments, Inc. N27W24025 Paul Court, Suite 100 Pewaukee, WI 53072

Prepared By:

GESTRA Engineering, Inc. 191 W. Edgerton Avenue Milwaukee, WI 53207 (414) 933-7444

Table of Contents

1.0	INTRODUCTION1
1.1	PROJECT INFORMATION1
2.0	SCOPE OF SERVICES
3.0	EXPLORATION RESULTS
3.1 3.2 3.3	SITE CONDITIONS 2 SUBSURFACE SOIL PROFILE 3 GROUNDWATER OBSERVATIONS 4
4.0	ANALYSIS AND RECOMMENDATIONS5
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	GEOTECHNICAL CONSIDERATIONS5SITE PREPARATION.6FOUNDATION RECOMMENDATIONS8FLOOR SLAB RECOMMENDATIONS9LATERAL EARTH PRESSURES.10SEISMIC SITE CLASSIFICATION11PAVEMENT RECOMMENDATIONS11STORMWATER FEATURES.13CONSTRUCTION CONSIDERATIONS21
5.0	EXPLORATION AND TESTING PROCEDURES23
5.1 5.2 5.3	LAYOUT AND ELEVATION PROCEDURES.23FIELD TESTING PROCEDURES.23LABORATORY TESTING PROCEDURES23
STAND	ARD OF CARE

APPENDIX I SITE LOCATION MAP, BOREHOLE LOCATION MAP, TEST BORING LOGS, SOIL EVALUATION-STORM FORMS, GENERAL NOTES AND SOILS CLASSIFICATION

APPENDIX II LABORATORY TEST RESULTS

© GESTRA Engineering, Inc. 2023

Geotechnical Engineering Report

Thomas Farm Development NWC Golf Road and Elmhurst Road Town of Delafield, Wisconsin

1.0 INTRODUCTION

GESTRA Engineering, Inc. (GESTRA) was authorized by Neuman Developments, Inc. (Neumann) to complete a subsurface exploration and geotechnical engineering report for the Thomas Farms Development project located at the northwest corner of Golf Road and Elmhurst Road in the Town of Delafield, Wisconsin. This report presents the results from the subsurface soil exploration and describes the field exploration, laboratory test results, and provides recommendations pertaining to the design and construction of the proposed buildings, roads and stormwater basins.

The engineering recommendations and analysis contained within this report are based on the following project information which is a projection of GESTRA's understanding of the project. If for any reason the actual project information differs from what is reported below, GESTRA should be contacted so that we can review our recommendations in light of any new information.

1.1 PROJECT INFORMATION

The site is bounded by the Lake County Recreation Trail on the north, Elmhurst Road on the east, an existing subdivision in the northwest, Glen Cove Road on the west and Golf Road on the south. The site plan is divided into 4 zones, described as follows and shown on the Borehole Location Plan in the Appendix. At this time, preliminary stormwater elevations are available, but detailed grading plans have not been completed.

Zone 1 – northwest quadrant. This section will include an eastern cul-de-sac extension of Crooked Creek Road and 8 single-family house lots around the cul-de-sac. A detention pond is planned on the north side.

Zone 2 – northeast quadrant. This zone includes 29 single-family house lots, a portion of the east loop road and a cul-de-sac. Detention ponds are planned on the north and west sides, a biofiltration basin near the center and dry pond basin in the southern part.

Zone 3 – southwest quadrant. This zone includes 37 single-family house lots, 28 duplex condos, west loop road with cul-de-sac and connection to the east loop road, and clubhouse amenities building. Three detention ponds are planned in the northern part and a biofiltration basin on the south side.

Zone 4 – southeast quadrant. This zone includes 81 single-family house lots, part of the east loop road with two cul-de-sacs and connection to the west loop road. Three detention ponds are planned in the west, center and southeast portions and rain garden on the south side.

2.0 SCOPE OF SERVICES

GESTRA has performed the following services for the project:

- Contacted Diggers Hotline to locate the public utilities at the site.
- Completed thirty-nine (39) standard penetration test (SPT) soil borings to depths between 4 ¹/₂ feet and 19 feet below existing grades. All borings encountered split spoon and/or auger refusal at termination. At the completion of drilling, boreholes were abandoned per WDNR requirements.
- Performed laboratory soil testing to assign classification and engineering properties to the soils encountered. The laboratory testing included hand penetrometer, moisture content, mechanical analysis, hydrometers, and Atterberg limits.
- Prepared this geotechnical engineering report presenting the results of the field exploration, laboratory testing, and providing a discussion of the subsurface conditions and the following recommendations:
 - a. Buildings: general recommendations for allowable soil bearing capacity for spread foundations, estimates of settlement, anticipation and management of groundwater, subgrade modulus for design of slab on grade, lateral earth pressures, seismic site classification, and site preparation/ soil correction.
 - b. Pavement: soil parameters for the pavement design consisting of estimated CBR values, and asphalt, concrete and base course thickness for the proposed roadways based on anticipated traffic volumes.
 - c. Stormwater: The soil from the borings were classified per the USCS system and the Field Book for Describing and Sampling Soils, USDA, NRCS, 2012. Provided DSPS Soil and Site Evaluation Storm forms and a discussion of soils conditions and recommendations related to infiltration and detention basin design.

3.0 EXPLORATION RESULTS

3.1 SITE CONDITIONS

The development is planned within the undeveloped parcels bounded by Golf Road to the south, Elmhurst Road to the east, Glen Cove Road to the west and the Lake County Recreation Trail/Oakton Road to the north. The majority of the development is in the southern and eastern portion which is currently farm field with several tree lines. The development in the northwest portion is located in an area that is a combination of open field and woods. Two existing residential buildings are located in the southeast part of the development and are accessible from Thomas Road which connects Golf Road and Elmhurst Road. A third residential building is located on the south side of the property near the approximate mid-point of the development. Based on historical aerial photographs available on the Waukesha County GIS website, the site has remained unchanged since the 1960's.

The topography varies significantly across the development area. The northwest portion ranges from approximately 895 feet to 915 feet, generally sloping upward from the north to the south. The highest elevation portion of the development is in the southwest part around 945 feet. From this location it slopes downward to the north to around 915 feet and slopes downward toward the east with elevations ranging from 910 or 915 feet in the southeast portion and 900 feet in the northeast portion. Ground surface elevations at our boring locations range from 946.1 feet at B-29

in the southwest, 916.3 feet at B-22 in the southeast, 899.7 feet at B-1 in the northeast, and 899.3 feet at B-37 in the northwest.

3.2 SUBSURFACE SOIL PROFILE

The general soil profile consisted of topsoil underlain by lean clay or silty clay over granular soil with various amounts of fines (silt and clay soil). At multiple boring location auger refusal was encountered and can be an indication of possible bedrock. Table 3-1 provides the depth and elevation of auger refusal at the boring locations. The topsoil thickness was typically less than 1 foot at each boring location with the exception of B-30 where approximately 2-feet of topsoil was observed.

The native lean clay was typically encountered with a medium stiff to very stiff consistency and extended to approximate depths of 2 feet to $11 \frac{1}{2}$ feet. In some shallower borings the clay extended to auger refusal. The native clay had varying amounts of sand and moisture contents of samples tested ranged from 8.3% to 30.3% with the majority of the samples tested having moisture contents greater than 20%.

Clayey sand was observed in approximately half the borings and was typically below the upper lean clay or silty clay. Based on SPT N-values, the clayey sand ranged from very loose to medium dense. Varying amounts of gravel were noted in the material.

The majority of the borings included a granular layer (sand or gravel) with varying amounts of silt above auger refusal. Based on SPT N-values, the granular material typically ranged from medium dense to very dense. Some locations of very dense soil encountered may be considered weathered bedrock. An exception to this was boring B-33 where a blueish gray medium dense to very dense silt was encountered between the upper clayey sand and auger refusal.

Ground Surface Elevation	Boring	Refusal Depth	Refusal Elevation	Ground Surface Elevation	Boring	Refusal Depth	Refusal Elevation
899.7	B-1	12.5	887.2	917.7	B-21	4.5	913.2
906.9	B-2	8.5	898.4	916.3	B-22	8	908.3
915.6	B-3	10	905.6	940.4	B-23	10.5	929.9
919.8	B-4	9.5	910.3	940.7	B-24	10.5	930.2
917.7	B-5	6.5	911.2	932.6	B-25	12	920.6
912.4	B-6	13.5	898.9	938.3	B-26	16	922.3
916.3	B-7	9.5	906.8	939.0	B-27	15	924.0
918.7	B-8	6.5	912.2	943.4	B-28	16	927.4
919.2	B-9	9	910.2	946.1	B-29	20	926.1
920.8	B-10	12	908.8	948.5	B-30	13	935.5
917.8	B-11	5.5	912.3	939.7	B-31	15	924.7
917.4	B-12	5	912.4	939.7	B-32	16	923.7
921.7	B-13	4.5	917.2	924.1	B-33	17	907.1
925.2	B-14	7.5	917.7	929.6	B-34	11	918.6
926.8	B-15	9.5	917.3	937.8	B-35	13	924.8
930.5	B-16	8.5	922.0	900.7	B-36	15.5	885.2

Table 3-1: Auger Refusal Depths (feet)

Ground Surface Elevation	Boring	Refusal Depth	Refusal Elevation	Ground Surface Elevation	Boring	Refusal Depth	Refusal Elevation
925.0	B-17	8.5	916.5	899.3	B-37	17.5	881.8
931.2	B-18	6.5	924.7	910.0	B-38	19	891.0
934.9	B-19	9.5	925.4	911.7	B-39	17.5	894.2
925.6	B-20	6.5	919.1				

Notes: Ground surface elevation at B-36 obtained by GESTRA, all other ground surface elevations provided by Trio.

GESTRA reviewed the "Preliminary depth to bedrock map of Waukesha County, Wisconsin" available from the Wisconsin Geological and Natural History Survey. The map indicates that depth to bedrock in the project area is typically less than 50 feet in the project area.

Results of the field and laboratory tests and observations are depicted on the individual boring logs included in Appendix I of this report. Soils were grouped together based on similar observed properties. The stratification lines were estimated by the reviewing engineer based on available data and experience. The actual in-situ changes between layers may differ slightly and may be more gradual than depicted on the boring logs. Subsurface and groundwater conditions can vary between borehole locations and in areas not explored.

It is important to note that the soil observations, fill depths, and topsoil thickness estimates were made in small diameter boreholes. Therefore, it should be understood that thicker or thinner deposits of the individual strata are likely to be encountered within other portions of the project. Furthermore, the estimation of strata thickness at a particular location can differ from person to person due to a sometimes indistinct transition between the soils encountered. Additionally, it must be recognized that in the absence of foreign substances and/or debris within the soil samples obtained, it is sometimes difficult to distinguish between natural soils and clean soil fill.

3.3 GROUNDWATER OBSERVATIONS

Groundwater observations were typically completed during and at the completion of drilling operations. Select borings were left open for extended water level readings. The shallower groundwater appeared to be more common in the western portion of the project site. Table 3-2 provides a summary of the highest water level measured at each boring. If the extended water level readings varied by more than 1 foot from the during or after drilling water levels, both values are listed. Refer to the individual boring logs for specific information.

Ground		Groundwater		Ground		Groundwater	
Surface Elevation	Boring	Depth	Elevation	Surface Elevation	ace Boring tion	Depth	Elevation
899.7	B-1	4	895.7	917.7	B-21	NE	-
906.9	B-2	5	901.9	916.3	B-22	NE	-
915.6	B-3	NE	-	940.4	B-23	NE	-
919.8	B-4	NE	-	940.7	B-24	NE	-
917.7	B-5	NE	-	932.6	B-25	7	925.6
912.4	B-6	NE	-	938.3	B-26	11 ^a 5 ^b	927.3 ^a 933.3 ^b

Table 3-2: Groundwater Measurements (feet)

Ground		Grou	ndwater	Ground		Groun	dwater
Surface Elevation	BoringDepthElevationSurfElevationElevationElevation	Surface Elevation	Boring	Depth	Elevatio		
916.3	B-7	3 ^a 0.4 ^b	913.3 ^a 915.9 ^b	939.0	B-27	10	928.96
918.7	B-8	NMR	NMR	943.4	B-28	14 ^a 12 ^b	929.4 ^a 931.4 ^b
919.2	B-9	NMR	NMR	946.1	B-29	13	933.1
920.8	B-10	NE	-	948.5	B-30	NE	-
917.8	B-11	NE	-	939.7	B-31	8	931.7
917.4	B-12	NE	-	939.7	B-32	8	931.7
921.7	B-13	NE	-	924.1	B-33	3.5 ^a 2 ^b	920.6 ^a 922.1 ^b
925.2	B-14	NE	-	929.6	B-34	8 ^a 3 ^b	921.6 ^a 926.6 ^b
926.8	B-15	NE	-	937.8	B-35	9	928.8
930.5	B-16	7.5	923.0	900.7	B-36	4	896.7
925.0	B-17	8	917.0	899.3	B-37	7 ^a 5.5 ^b	892.3 ^a 893.8 ^b
931.2	B-18	NE	-	910.0	B-38	NE	-
934.9	B-19	NE	-	911.7	B-39	13 ª 2 ^b	898.7 ^a 909.7 ^b
925.6	B-20	NE	-		•		

Notes:

Ground surface elevation at B-36 obtained by GESTRA, all other ground surface elevations provided by Trio.

B-8, B-9: Clayey soils to depth of boring.

a – *At completion of drilling water level reading.*

b- Extended water level reading.

Groundwater level fluctuations may occur with time and seasonal changes due to variations in precipitation, evaporation, surface water runoff and local dewatering. Perched water pockets and a higher water table may also be encountered during wet weather periods, particularly in more permeable silt and sand seams or granular fill material overlying less permeable clays. Installation and monitoring of an observation well would be required to assess true groundwater elevation.

4.0 ANALYSIS AND RECOMMENDATIONS

4.1 GEOTECHNICAL CONSIDERATIONS

Based on the conditions encountered at site, we have identified potential subsurface conditions that may impact future building and site development in the following paragraphs.

Difficult Excavation: One of the primary concerns is the presence of very dense (SPT N>50) materials and possible bedrock at shallower depths. Based on preliminary plan elevation, some locations of stormwater features are designed at a lower elevation than the possible bedrock encountered. The remaining site grades have not been established, but other portions of this project may require excavation through dense to very dense ground conditions or bedrock which can result

in increased excavation costs. Additional exploration with test pits can provide a better indication of the anticipated difficulty in excavation of the material when additional project design elevations are available. Depending on the depth of excavation, the project may want to evaluate blasting.

High Moisture Content Clay Soils: Another geotechnical concern identified is the presence of higher moisture content lean clay generally located immediately below the topsoil. These soils are often unstable during earthwork, prone to disturbance by construction traffic and can lose strength over time when subjected to freeze thaw cycles, moisture entering through cracks in pavement, and repetitive traffic loading. Consolidation of this soft soil layer will occur if any new loads either from new fill and/or new structure are applied on this deposit which may lead to excessive settlement for future site construction or buildings.

Potential for Large Fill Placement: Significant cut and fill may be required during grading operations. Large and deeper fills over lower strength material may result in consolidation of the material and excessive settlement due to the weight of the new fill. Further evaluation may be required when design elevations are available.

Groundwater: Based on preliminary plan elevation, some locations of stormwater features are designed at a lower elevation than the water noted in our borings. The water may also be a concern for below grade levels for new buildings and in some excavation areas localized water should be expected. Groundwater was observed higher after completion or in next day water level readings at some locations. Further evaluation may be required when design elevations are available.

Variable Depths to Bearing Material: The estimated depth to recommended bearing material presented in this report is variable across the site. When design elevations and building loads are available, the foundations recommendations should be reviewed as significant cuts or fill may affect the foundation recommendations. Areas with lower strength soil near the surface may require a lower design bearing pressure or soil improvement if significant fills are planned.

The recommendations presented in this report include assumptions related to the project design because detailed design information has not been developed. When additional design information is known, the recommendations presented in this report should be reviewed as information such as structural loads and changes in design elevations could impact the recommendations in this report.

4.2 SITE PREPARATION

Site preparation should start with removal of any trees/bushes and vegetation, as well as surficial debris or other deleterious material (if present), organic soils and topsoil. Any additional unsuitable soil/materials exposed such as buried topsoil (if encountered), excessive vegetation roots, deleterious material, soil that contains significant amounts of organics, or other unsuitable material should be removed in their entirety from the footprint of future building and pavement areas. Existing buildings and structures should be razed and completely removed to expose suitable native material. In addition, all unused utilities (if present) should be properly removed or abandoned. Field drain tile (if present) should be properly removed or abandoned or redesigned/reconnected. Material removed from the project site should be disposed in accordance with all applicable federal, state, and local regulations. Soil should not be stockpiled near or adjacent to the excavations.

In building slab on grade area and pavement areas, after the initial site preparation described above, we recommend recompacting the exposed material. Any areas of significant deflection during re-

compaction may be disked, dried, and re-compacted if weather permits, or removed and replaced with engineered fill. After re-compaction, before any initial fill lifts are placed, and before base material is placed, a proof roll is recommended with a minimum 20-ton tri-axle dump truck, or like machinery imparting similar static loading on the soil and moving at no more than walking speed. A geotechnical engineer or their designated representative should be present during the proof roll in order to identify soft or unstable areas, if any, and subsequently recommend remediation procedures. Where soil correction is needed, the options for improvement include the methods described in the following paragraphs.

Recondition the subgrade through moisture/density control:

If this option is chosen, the upper 12-inches of subgrade should be aerated through disking and dried to within two (2) percent of its optimum moisture content. After which, the dried soils can be re-compacted in place to at least 95% of the maximum modified Proctor dry density (ASTM D1557). However, this method may not be effective if lower strength soils extend to depths greater than 1 foot below grade.

Removal and replacement:

The soft or unstable subgrade soils should be removed and the excavated subgrade material replaced with suitable engineered fill or well graded granular fill. The new fill should be compacted to at least 95% of the maximum dry density as obtained by the maximum modified Proctor dry density (ASTM D1557). To potentially reduce the amount of subgrade excavation, geogrid with appropriate granular fill may be used in the excavation correction.

Chemical Stabilization

The soft or unstable clayey (lean clay or clayey sand) or silty soil can also be stabilized with cement or fly ash. Lime stabilization may be considered for clay soil. Chemical stabilization is typically more cost effective if performed over large areas in a single mobilization. In the case of soil stabilization, a proper mix design should be performed prior to the performance of any soil modification as the variability of the soil may limit the effectiveness of soil modification. GESTRA did not perform a mix design as it was not part of our scope of services.

The type of improvement and the depth of correction needed should be determined at the time of construction based on drainage, weather, and soil conditions. If the project construction schedule does not allow for adequate time to rework site subgrade soils, excavation and replacement will likely be required or alternate site preparations could be considered such as chemical stabilization or utilizing geotextile fabric or geogrid and granular fill to provide a stable pavement subgrade. The native clay soils encountered below the topsoil in the majority of the borings were observed with high moisture content (20% or more) which is an indication of potentially unstable subgrade conditions.

As a general rule for new fill placement, the lift thickness should not exceed 12 inches for granular soils and 9 inches for cohesive soil and the maximum particle size should be limited to 25% of the lift thickness. For typical earthwork, new engineered fill placed within the building pad or in the pavement subgrade/base course should be compacted to a minimum of 95% of the modified Proctor maximum dry density value. Alternate compaction may be required where new fill is around 10 feet (or greater) as clayey fill have a greater potential to consolidate post compaction. Structural soil fill should be placed a minimum of five feet beyond the edges of the new building and pavement areas, and an additional foot horizontally for each vertical foot of new fill to be

placed to provide adequate lateral confinement. The inorganic site soils free of any deleterious material and debris that would be removed from excavations could be reused as structural fill; however, moisture conditioning of the material may be necessary and sorting of unsuitable soils from existing material may be required before it is placed as engineered fill.

Site grading should direct runoff away from planned pavement areas and should be maintained throughout construction so that the potential for the softening of the subgrade soils is reduced. Equipment and working traffic should also be kept to a minimum on subgrade surfaces, especially during times of precipitation or following spring thaw. The contractor is responsible for maintaining completed earthwork areas. Consideration should be given to installing construction roads to reduce disturbance to the subgrade soils.

The information presented in this report may be used to evaluate the site conditions for construction, but the contractor is responsible for determining site preparation means and methods required to complete the project. An aggressive construction schedule or construction during seasons with limited drying time may not allow for reconditioning of the subgrade and soil correction may require removal and replacement with imported granular fill or use of chemical stabilization.

This geotechnical report identifies or recommends material that may be used as engineered fill, but the contractor is responsible for utilizing materials that meet the project requirements and determining means and methods required for placement and compaction. Typically, clay soils are easier to dry or rework when placed over large open areas during favorable weather conditions. Clay soils can be difficult to compact or moisture condition in trench backfill situations and may increase potential for consolidation and settlement of the backfill if it is not placed or compacted properly. Granular soils may be easier to place and compact in trench backfill situations but may increase construction costs if the material has to be imported.

4.3 FOUNDATION RECOMMENDATIONS

Due to variable existing terrain, the foundations will be dependent on the final grading plan and earthwork performed during the mass grading work. The following section is provided as a general discussion for building foundation design for preliminary design purposes. The most economical foundation should consider the actual structural loads, design elevations, and building design requirements. Modifications may be required for individual buildings depending on actual design information, including building location, grades and structural loads. Soil borings were not performed at each planned building location and future building owners may want to consider performing a geotechnical exploration specific to an individual building.

Based on the conditions encountered, a typical shallow spread/strip footing system designed for an allowable bearing capacity of 1,500 psf to 2,000 psf can be considered for the proposed buildings. Spread foundations designed for a maximum net allowable soil bearing capacity of up to 2,000 psf should be supported by the medium dense native granular soil, native clay soil with a minimum unconfined compressive strength (Qp) of 1 tsf or new engineered fill placed over suitable native soil.

Layers of lower strength soil were noted that may require correction at some boring locations such as B-1, B-5, B-7, B-11, B-13, B-16, B-20, B-24, B-26, B-32, B-33, and B-38. However, the impact of these layers on future construction will in part depend on future design elevations.

Bedrock depth was variable across the project site. If bedrock is present at or near a building

foundation bearing elevation, the building should be designed such that the foundations bear entirely on bedrock or suitable soil/engineered fill to avoid potential for differential settlement.

Where unsuitable soils are encountered at the foundation elevation, soil correction should consist of additional excavation to remove the unsuitable soils. If the over-excavation is being filled with engineered fill, we recommend the over-excavation be widened at a minimum 1H:1V ratio from the edge of the foundation. The over-excavation can then be filled to grade with suitable engineered fill placed in lifts not exceeding 12 inches and compacted to at least 95% of maximum dry density as determined by the modified Proctor (ASTM D1557). Alternatively, lean concrete with a minimum compressive strength of 500 psi could be used to fill the over-excavation to grade and lateral over-excavation will not be required.

The depth of excavation required to expose suitable bearing material may vary in areas not explored by GESTRA; therefore, we recommend the foundation excavations be reviewed by a geotechnical engineer or their designated representative to determine when soils suitable to support the recommended bearing capacity are observed.

The shallow foundation design should incorporate a minimum strip footing width of 18 inches and column pad width of 24 inches, even if the allowable bearing capacity has not been fully utilized. All perimeter foundations should meet code depth requirements and are recommended to bear a minimum of 48 inches below grade for heated structures and 60 inches for unheated structures in order to protect the structure from frost heave. Interior foundations in heated buildings may bear at a shallower depth provided the bearing soils will not freeze. If the structure includes load bearing thickened slabs, subgrade preparation under the thickened slabs should follow the recommendations in this report for foundations. We recommend that foundations also be suitably reinforced in order to compensate for the effects of minor differential movements due to subsurface soil variations.

4.4 FLOOR SLAB RECOMMENDATIONS

The subgrade material evaluated and prepared according to the recommendations in this report should be suitable to support slab on grade concrete. We recommend that a subgrade reaction modulus of 125 pounds per square inch per inch of deflection (pci) be used in the design of the floor slab at grade. The modulus value was assumed based on clay and/ or sand soil as the subgrade soil, assumes a 1-foot plate is used to determine the modulus and should be adjusted for the size of the foundation and confinement effect. We recommend that the floor slabs be suitably reinforced and designed to be separate from the foundation system in order to allow for separate movements. It is recommended the structural engineer specify the floor slab thickness, reinforcing, joint details and other parameters. At a minimum, the floor slabs are recommended to be reinforced or the concrete contain an appropriate fiber mesh additive to help control shrinkage cracking.

We recommend the installation of a capillary moisture break directly below the slab. A typical capillary moisture break may consist of at least 6 inches of sand or gravel with a maximum particle size of 1-1/2 inches, containing 15-55% passing the number 4 sieve and no more than 12% passing the number 200 sieve (fines) and should follow the recommendations of ACI 302.1R-15, Chapter 6. The structural engineer, architect, or manufacturer of a floor covering should determine the need of a vapor retarder, specify the vapor retarder location, and consider the concrete curing and the effects of moisture on future flooring materials or building end use. The vapor retarder should include proper sealing at penetrations, overlap at joints, and sealing at the interface of the wall and slab and may require an adequate cushion material to prevent damage.

Given the presence of groundwater encountered in our exploration, it may be necessary to address groundwater issues in the design of a below grade slab for some structures. In these cases, a groundwater management system is recommended to maintain water level below the slab system for the serviceability of the proposed structure. This may be accomplished by installing an underslab drainage system incorporated with the recommendations for below grade wall drainage presented in this report. We recommend including cleanouts for the system in the event the subsurface drainage system becomes blocked or fails and is unable to remove the water from under the slab. A mechanical engineer should design the pumping and disposal of the water from the underslab drain and the perimeter drain system and the spacing of the cleanouts should be determined in conjunction with the structural engineer. We recommend including a redundant sump and pump system in the event larger groundwater events occur and evaluate if the system should include a backup power system. Further details for underslab drainage design will depend on the individual structure and subsurface conditions.

4.5 LATERAL EARTH PRESSURES

It is our understanding that some buildings will be designed with a below grade. Below grade walls will need to be designed to resist lateral earth pressures. The values presented in Table 4-1 assume that the walls are vertical; that a clean, free-draining granular fill is used as backfill within 2 feet behind the wall; the backfill condition at the ground surface is level; and that adequate drainage is provided to prevent the buildup of any hydrostatic pressure. In addition, the below grade walls will also be required to resist the surcharge of traffic that may occur during or after construction.

Below-Grade Wall Design Parameters ^a							
Total Unit Weight of Backfill (γ)	125 pcf						
Angle of Internal Friction (Φ)	26°						
At-Rest Earth Pressure Coefficient, (K _o)	0.56						
Active Earth Pressure Coefficient, (Ka)	0.39						
Passive Earth Pressure Coefficient, (K _p)	2.56						

Table 4-1: Below-Grade Wall Design Parameters

a - Based on lean clay soil encountered

For walls that are free to rotate at least 0.001 times the height of the wall, such as a temporary earth retention system and retaining walls, then an active earth pressure condition will develop. Equivalent fluid densities can be calculated by multiplying unit weight by the listed pressure coefficients at different conditions. For passive resistance, we recommend using a minimum factor of safety of 2.0 in passive earth pressure calculations because of the large strains required to mobilize the full passive resistance, ignoring the upper 1 foot of soil in frost protected areas and ignoring the soil within the frost depth for other areas.

Drainage should be provided behind below-grade and retaining walls to prevent the buildup of hydrostatic pressures. We recommend that free-draining granular drainage aggregate be placed

within 2 feet behind the back face of the walls. Drainage pipes are recommended to be installed behind the walls and be drained by gravity or a sump pit and pump system. The drainage pipes should be surrounded by a minimum of 6 inches of drainage aggregate. Due to the native soils containing a significant percentage of fine material, the drainage aggregate should be completely wrapped in a non-woven, high survivability, geotextile fabric with an apparent opening size (AOS) in the range of 70 to 100. The geotextile fabric should prevent migration of any adjacent soil into the drainage aggregate. We do not recommend using a drainage pipe that includes a geotextile sleeve in immediate contact with the pipe.

We recommend a relatively impermeable barrier that may consist of a minimum 2 foot thick clay cap or Bituminous or Portland cement concrete (i.e. walkways and drives) be placed around each of the below-grade structures to minimize surface water infiltration into the backfill against the walls. The clay material, if used, should be placed and compacted as recommended in this report and should extend from final grade to a depth of at least 2 feet. The clay cap or impermeable barrier should slope away from the structure at a minimum 2 percent grade. Surcharge loads, including those from adjacent (present and future) structures, as well as temporary construction equipment, within a zone defined by a plane extending at a 45 degree angle above the base of the wall should also be included in the design. The size of the compactor used behind the wall and requirements before backfilling should be confirmed by the structural engineer.

Given the presence of groundwater encountered in our exploration, it may be necessary to address groundwater issues in the below grade wall drainage system for some structures. In these cases, a groundwater management system and water proofing are recommended and may require incorporation of an underslab drainage system. We recommend including cleanouts for any drainage system in the event the subsurface drainage system becomes blocked or fails and is unable to remove the water from under the slab. A mechanical engineer should design the pumping and disposal of the water from the drainage system. We recommend including a redundant sump and pump system in the event larger groundwater events occur and evaluate if the system should include a backup power system. Further details for drainage design will depend on the individual structure and subsurface conditions.

4.6 SEISMIC SITE CLASSIFICATION

Section 1613 of the International Building Code 2015 (IBC) was used to assign a soil site classification. Based on the native soil conditions observed and assuming these are consistent or better to a depth of 100 feet, the soil site classification **D** (stiff soil) may be used in the structural design of the proposed buildings. Based on site class D, and mapped spectral response acceleration S_s and S_1 for Delafield, Wisconsin, the site coefficient F_a and F_v are 1.6 and 2.4, respectively. Portions of the site may be eligible for a soil site classification C (very dense soil and soft rock), but individual structures should be evaluated on a project by project basis.

4.7 PAVEMENT RECOMMENDATIONS

The pavement subgrade soil should be prepared and proof rolled following the recommendations in this report. Our recommendations below assume the subgrade conditions are consistent with the results of our subsurface testing evaluation and that the subgrade is thoroughly prepared for construction based on the recommendations developed in this report and pass a thorough proof roll prior to base material placement. As previously noted, the native clay soils encountered below the topsoil in the majority of the borings were observed with high moisture content (20% or more) which is an indication of potentially unstable subgrade conditions. Additional corrective action
should be determined at the time of construction for areas where it is necessary to provide a more consistent subgrade. Alternatively the project could consider a subgrade stabilization or a geogrid and granular stabilization layer as part of the design.

The Wisconsin Asphalt Pavement Association (WAPA) Asphalt Pavement Design Guide, AASHTO 2021, and the results of the geotechnical evaluation were used to provide the recommendations for the new asphalt pavement. Based on clayey soils or clayey sand as the subgrade soil, GESTRA recommends that "poor soils" (estimated CBR value between 2 and 5, SSV = 2.5) conditions should be assumed as the subgrade soils. Table 4-2 below presents the recommended hot mix asphalt and base course thicknesses for planned roadways. Pavement sections may be modified if the traffic volumes are different than presented below and should be confirmed with the requirements of the local municipality.

Base course material should be placed at moisture content within 2% of optimum and compacted to a minimum of 95% of maximum dry density as determined by the modified Proctor. Hot Mix Asphalt (HMA) should be placed and compacted following the guidelines of WisDOT Standard Specifications for Highway and Structure Construction, section 460.3.

Traffic Class	Pavement Layer Type	Thickness (inches)	Material Type	WisDOT Specifications
Traffic Class II,	Hot Mix Asphalt	4.5	LT	Section 460
(subdivision streets, 20-year ESALs < 1 million) ^a	Base Course (Dense Graded)	12.0	1-1/4 inch Crushed Stone	Section 305

Table 4-2:	Pavement	Design	Recommendations
	1 avenuent	Design	Recommendations

a- Based on Table 7.2 of WAPA Asphalt Pavement Design Guide.

One of the important considerations in designing a high quality and durable pavement is providing adequate drainage. Drainage design for the proposed pavement section is out of GESTRA's scope for this project. It is important that bird baths (leeching basins) and surface waves are not created during construction of the HMA layer. A proper slope should be allowed and drainage should be provided along the edges of pavements and catch basins to prevent the accumulation of free water within the base course, which otherwise may result in subgrade softening or swelling, and pavement deterioration under exposure and repeated traffic conditions.

Pavement sections presented in the above table should not be used for areas which experience repeated truck traffic, equipment or truck parking areas, entrances and exit aprons, or contain trash dumpster loading zones. In the areas listed above, a Portland Cement Concrete (PCC) pavement should be used. The PCC layer thickness is recommended to be 6.0 inches, with a minimum of 6.0 inch-thick crushed stone base course, but may be modified depending on the final design. The reinforcement details for PCC layers should be designed by the project design engineer as the project conditions dictate.

All pavements require regular maintenance and repair in order to maintain the serviceability of the pavement. These repairs and maintenance are due to normal wear and tear of the pavement surface and are required in order to extend the serviceability life of the pavement. However, after 20 years

of service, a normal pavement structure is likely to deteriorate to a point where pavement rehabilitation may be required to maintain the serviceability.

4.8 STORMWATER FEATURES

Multiple stormwater features are planned for the project which include detention ponds and bioinfiltration basins. Trio provided a summary of the preliminary stormwater plan which generally included normal water elevation for detention ponds and bottom of basin elevations for bioinfiltration basins. For the purpose of our analyses, we assumed the bottom of wet retention stormwater ponds at 5 feet below normal water level as provided by Trio. Within this report, the bottom of basin elevation identified is termed the native soil interface. At this time, design details are not finalized, so we have provided a summary of the elevations, conditions and comments related to infiltration and retention at each boring location and separated the summary by the different zones of the development.

The samples collected from the borings were evaluated for the stormwater features, and the WDNR Soil and Site Evaluation-Storm forms are included in Appendix I. The texture of the samples collected was identified visually. The stratification lines between the soil types were identified based on the available data. The actual in-situ changes between layers may differ slightly and may be more gradual than depicted on the evaluation form. Subsurface and groundwater conditions can vary in areas not explored by GESTRA. Infiltration rates for the observed soil textures were estimated based on the information provided in WDNR Technical Standard 1002, Table 2 (dated December 2022), and are presented in the Soil and Site Evaluation-Storm forms attached in Appendix I (separated by existing parcels).

In the following tables we have provided details for the individual stormwater features planned and evaluated each for wet retention and infiltration regardless of the current plan. Within each table we have provided comments related to a wet retention pond liner and infiltration. The information presented in this report should be reviewed in conjunction with the attached boring logs and Soil Evaluation-Storm forms. Typically, the comments will fall under the following conditions.

• Liner required:

GESTRA evaluated the native soil conditions following the general guidelines of the WDNR Conservation Practice Standard 1001 for the design of Wet Detention Ponds. The existing native soil conditions were compared to Appendix D (Liner Flow Chart for Wet Detention Ponds) to determine if a liner is required. At locations where *sandy clay, silty clay or clay* were not present to at least 3 feet below the native soil interface or if bedrock (possible bedrock/auger refusal) was within 2 feet or above the native soil interface, the location is recommended for a constructed liner.

• Not suitable for infiltration:

GESTRA evaluated the native soil conditions following the general guidelines of NR 151.124(4)(c) and Wisconsin Department of Natural Resources (WDNR) Conservation Standard Practice 1002. Locations were noted as eligible for exemption from infiltration where *sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, or clay* was present at the native soil interface. Locations where bedrock (possible bedrock/auger refusal) or groundwater was less than 3 feet from native soil interface were also noted as not suitable for infiltration as adequate separation and filtering layer would not be present.

Additional exploration through test pits and further laboratory testing is required if a basin will be designed for infiltration per WDNR Conservation Standard Practice 1002. When final design elevations are determined, additional evaluation of infiltration device is also recommended to establish if the soil meets the filtering layer requirements if the bottom of the pond will be within 3 feet of the bedrock or groundwater levels encountered. NR 151 requires the soil between the bottom of the infiltration system and seasonal high groundwater have at least a 3-foot layer of soil with 20% fines or greater or a 5-foot soil layer with 10% fines or greater. Per WDNR CPS 1002, *sandy loams, loams, silt loams, silts and all clay textural classifications* are assumed to meet the percent fines limitations of a filtering layer.

Zone 1 – northwest quadrant

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments
B-36 ª	900.7		885.2	896.7	Liner required. Silt loam at native soil interface.
					Not suitable for infiltration. Groundwater above native soil interface.
		890.3			Liner required. Sandy clay loam at native soil interface.
B-37	899.3		881.8	893.8	Not suitable for infiltration. Groundwater above native soil interface and soil eligible for infiltration exemption.

Pond 13P – Wet Retention

Notes: a - B-36 offset as directed by Trio. Staked location in wooded area and not accessible.

Zone 2 – northeast quadrant

Pond	9P -	Wet	Retention
------	------	-----	-----------

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments
B-1	899.7	893	887.2	895.7	Liner required. Sandy clay loam at native soil interface. Not suitable for infiltration. Groundwater above native soil interface and soil eligible for infiltration exemption.
B-2	906.9		898.4	901.9	Liner required. Possible bedrock above native soil interface. Not suitable for infiltration. Groundwater and possible bedrock above native soil interface.

Basin 10B – Bioinfiltration

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments
В-3	915.6	912	905.6	Not encountered	Liner required. Sand at native soil interface. Suitable for infiltration. Possible additional evaluation of filtering layer, sand at native soil interface.
B-4	919.8		910.3	Not encountered	Liner required. Silt loam at native soil interface. Not suitable for infiltration. Possible bedrock within 2 feet of native soil interface.

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments
B-5 917.7		907.2	911.2	Not encountered	Liner required. Possible bedrock above native soil interface.
	917.7				Not suitable for infiltration. Possible bedrock higher than native soil interface.
B-6	912.4	912.4	898.9	Not encountered	Liner potentially required. Sandy clay loam at native soil interface.
					At native soil interface, soil eligible for infiltration exemption.

Basin 8B – Dry Pond

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments		
B-8	918.7				912.2	NMR	Liner potentially required. Sand clay loam at native soil interface. At native soil interface, soil aligible for infiltration
					exemption.		
В-9	B-9 919.2	916.5	910.2	NMR	Liner potentially required. Clay at native soil interface but does not extend 3 feet.		
					At native soil interface, soil eligible for infiltration exemption.		

Notes: NMR = *no measurement recorded. B-8, B-9, predominately clayey soils to depth of boring.*

Zone 3 – southwest quadrant

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments
B-33	924.1		907.1	922.1	Liner required. Sandy loam at native soil interface. Not suitable for infiltration. Groundwater above native soil interface.
B-34	929.6	917	918.6	926.6	Liner required. Groundwater and possible bedrock above native soil interface. Not suitable for infiltration. Possible bedrock above native soil interface.

Notes: Groundwater elevation is extended reading. At completion of drilling groundwater at 920.6 feet in B-33 and 921.6 feet in B-34 which are also higher than plan native soil interface.

Pond 1B – Wet Retention

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments
				Liner potentially required. Silty clay loam at native soil interface.	
B-26	938.3	933.5	922.3	933.3	Not suitable for infiltration. Groundwater within 1-foot of native soil interface. Eligible for infiltration exemption.
B-27	939		924.0	929	Liner potentially required. Silty clay loam at native soil interface. Eligible for infiltration exemption.

Notes: Groundwater elevation is extended reading, At completion of drilling groundwater at 927.3 feet in B-26. Extended water level reading used in our evaluation.

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments
B-25	932.6	931	920.6	925.6	Liner potentially required. Clay loam at native soil interface. Eligible for infiltration exemption. Additional excavation required to expose non-exempt material.

Basin 4B – Bioinfiltration

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments	
B-29	946.1		926.1	933.1	Liner required. Sand at native soil interface. Suitable for infiltration. May require filtering layer.	
В-30	948.5	936	935.5	Not encountered	Liner required. Sand at native soil interface. Possible bedrock within 1 foot of native soil interface. Not suitable for infiltration. Possible bedrock within 1 foot of native soil interface.	

Zone 4 – southeast quadrant

Pond	12P -	Wet Retention
------	-------	---------------

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments	
B-17	925.0	917	916.5	917.0	Liner required. Loamy sand at native soil interface. Possible bedrock within 1 foot of native soil interface. Not suitable for infiltration. Possible bedrock within 1 foot of native soil interface.	
B-18	931.2		924.7	Not encountered	Liner required. Possible bedrock above native soil interface. Not suitable for infiltration. Possible bedrock above native soil interface.	

Pond 7P – Wet Retention

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments		
B-13	921.7		917.2	Not encountered	Liner required. Sandy clay loam at native soil interface. Possible bedrock within 3 feet of native soil interface. Not suitable for infiltration. Possible bedrock within 3 feet of native soil interface.		
B-14	925.2	919.3	917.7	Not encountered	Liner required. Loamy sand and sandy clay loam at native soil interface. Possible bedrock within 2 feet of native soil interface. Not suitable for infiltration. Possible bedrock within 2 feet of native soil interface.		

Pond 6P – V	Vet Retention
-------------	---------------

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments	
B-21	917.7	005	913.2	Not encountered	Liner required. Possible bedrock above native soil interface. Not suitable for infiltration. Possible bedrock above native soil interface.	
B-22	916.3	905	908.3	Not encountered	Liner required. Possible bedrock above native soil interface. Not suitable for infiltration. Possible bedrock above native soil interface.	

Rain Garden 5B

Boring Location	Existing Ground Elevation	Plan Native Soil Interface Elevation	Bedrock Elev. (feet)	Groundwater Elev. (feet)	Comments
В-20	925.6	922	919.1	Not encountered	Liner may not be required. Silty clay at native soil interface, but possible bedrock within 3 feet of native soil interface. At native soil interface, soil eligible for infiltration exemption. Not suitable for infiltration. Possible bedrock within 3 feet of native soil interface.

The following recommendations are for the construction of a storm water basin as a wet detention pond and are in part developed based on the information available in the Wisconsin Department of Safety and Professional Services Chapter SPS 382.365 and 360.30 and Appendix D of Technical Standard 1001. At this time the design requirements are not known and our recommendations are based on an assumed Type A liner.

For an assumed Type A liner, as a minimum the base, sides and berms at elevations below the design high-water level should be constructed out of clay soils with the following properties:

- an average plasticity index (PI) of 12 or more with none less than 10,
- an average liquid limit (LL) of 25 or greater with none less than 20,
- a minimum of 50% of the soil by weight finer than the #200 sieve,
- a minimum of 90% of the soil by weight finer than the #4 sieve, and
- in-place hydraulic conductivity of the compacted soils should be 1x10-7 cm/sec or less.

The fine-grained cohesive soils encountered in the borings that meet the above requirements will require sifting and sorting of the soil to remove large gravel, cobbles and boulders before placing it as liner material. Otherwise, the project should consider importing suitable clayey soil for the liner construction. A complete testing program of the proposed liner material should be performed to confirm it meets the project requirements before and after placement. The native soil encountered near the pond bottom elevation typically included gravel, cobbles and boulders.

Alternatively, a high density polyethylene (HDPE) or geosynthetic clay liner (GCL) could be considered in lieu of the installation of a clay liner. Another option would be constructing the liner using a soil-bentonite clay mix, but this system typically requires design and construction by a specialty contractor. Refer to Appendix D of Technical Standard 1001 for additional information related to the clay liner and these alternative liners.

The clay liner soils should be compacted using a sheepsfoot (or similar type) compactor to a minimum of 90% of the modified Proctor dry density value and at a moisture content at least 2% wet of optimum as determined by ASTM D1557. This material should be compacted in maximum 6-inch loose lifts and the compacted clay should be free of organics, cobbles, boulders, debris and any other unsuitable soils. The clay shall be disked or otherwise mechanically processed before compaction to break up clods so that the maximum clod size is 4 inches. The resulting clay liner should have a minimum thickness of 2 feet. Refer to NRCS Wisconsin Construction Specification 300 – Clay Liners for additional information pertaining to the placement and compaction of clay liner material.

Additional quality assurance testing is recommended during construction to confirm the material being placed meets the project requirements, including testing the clay liner materials for hydraulic conductivity and material properties. Regardless of the liner system selected, we recommend it be installed by a company with demonstrated prior experience with the product.

4.9 CONSTRUCTION CONSIDERATIONS

The detailed means and method of excavation and construction should be decided by the contractor and approved by the project design team. Based on the specific site information, geotechnical exploration results and requirements for the proposed structure, the following issues should be taken into consideration during construction.

Dewatering

For shallow excavations, substantial water is not anticipated to be encountered during excavation. If water is encountered during shallow excavations, we anticipate the appropriate number of temporary sump pits and pumps should be sufficient to remove anticipated volume of water in the excavation. The contractor should be prepared to control groundwater and surface water and prevent it from accumulating in excavations or otherwise affecting construction.

Multiple borings encountered water at depths of 10 feet or less. Therefore, water should be anticipated during excavation in these areas and may be present in other areas not explored. Perched or trapped water may also be encountered. Where excavations below water are anticipated, the contractor should be prepared to install a construction dewatering system and we recommend the water level during construction should be kept a minimum of 2 feet below the deepest excavation during construction and until the final structure below grade drainage system is operating. A specialty dewatering contractor should be consulted for appropriate dewatering methods during construction as well as to evaluate potential impact on the proposed construction and surrounding structures. If the dewatering system is not properly designed, a boiling and/or heaving subgrade could occur possibly resulting in loss of ground support and detrimental effect to the nearby existing structures. Further exploration and evaluation of the groundwater is recommended when final design elevations are established.

Excavation Stability

Caving is a common issue for excavation side walls during construction, especially if fill material, granular soils, and/or water seepage are observed. An excavation plan should be developed and the length of excavation left open should be limited to prevent caving soil from covering the suitable bearing soils.

A temporary soil retention system may also be necessary in order to prevent caving or provide support of surrounding structures or utilities during construction. Providing recommendations or designing the retention system is out of the scope of services for GESTRA. The contractor must comply with the federal, state, local and updated OSHA regulations during excavation and in retention system design to ensure excavation safety.

Occupational Safety and Health Act (OSHA) has instituted strict standards for temporary construction excavations. These standards are outlined in 29 CFR Part 1926 Subpart P. Excavations within unstable soil conditions or extending five feet or more in depth should be adequately sloped or braced according to these standards. Excavation safety is the responsibility of the contractor. Material stockpiles or heavy equipment should not be placed near the edge of the excavation slopes. The actual stable slope angle should be determined during construction and will depend upon the loading, soil, and groundwater conditions encountered.

Weather Implications

The subgrade soil or the soil at foundation level might become unstable with exposure to adverse weather such as rain, snow and freezing temperatures. The unstable areas due to weather exposure may require an additional undercut or stabilization and the representative geotechnical engineer should assist with the determination of the depth of additional undercut or stabilization procedure based on observation of the field condition.

Soil Sensitivity

Soil at the construction site will be exposed to moisture and disturbance from construction traffic, construction equipment and human factors. Due to the disturbance, soil may become sensitive with contact of water. Contractor should try to lessen the exposure the soil at the construction site may encounter to moisture and disturbances. Therefore, the foundations, floor slabs and pavements should be constructed immediately after the review of the representative geotechnical engineer.

5.0 EXPLORATION AND TESTING PROCEDURES

5.1 LAYOUT AND ELEVATION PROCEDURES

A total of thirty-nine (39) soil borings were completed at the approximate locations shown on the attached Borehole Location Map in Appendix I. The location of the borings were selected, located in the field, and ground surface elevation provided by Trio (project civil engineer). One boring location B-36 was in a wooded area and inaccessible. GESTRA adjusted the location per the direction of Trio and noted the offset location and ground elevation.

5.2 FIELD TESTING PROCEDURES

The boreholes were drilled using a track mounted drill rig. The boreholes were initiated and advanced by using hollow stem augers. 24-inch split spoon samples were collected continuously to the depth of the boring. Borings were planned to be drilled to a maximum depth of 20 feet, but were terminated at auger refusal shallower than planned depth.

All representative soil samples were taken in general accordance with the "Standard Method for Penetration Test and Split-Barrel Sampling of Soils" (ASTM D1586). After each sampling, a soil sample was retained and placed in a jar and recorded for type, color, consistency, and moisture, sealed and then transported to the laboratory for further review and testing, if required. The specific drilling method used including the depths, rig type, crew chief, are included on each of the individual boring logs as it may change for each borehole.

5.3 LABORATORY TESTING PROCEDURES

After completion of drilling operations, all of the retained soil samples were transported to GESTRA's laboratory and classified by a geotechnical engineer using the Unified Soil Classification System (USCS) and the Field Book for Describing and Sampling Soils, USDA, NRCS, 2012. Charts describing the classification systems used are included in Appendix I of this report. The engineer assigned laboratory testing suited to extract important index properties of the soil layers. These tests included hand penetrometer, moisture content, mechanical analysis, hydrometers, and Atterberg limits.

STANDARD OF CARE

Our exploration was limited to evaluating subsurface soil and groundwater conditions pertaining to the proposed project. GESTRA did not perform any environmental, chemical, or hydrogeologic testing as these were not part of our work scope.

This report should be made available in its entirety to bidding contractors for information purposes. The soil boring logs and borehole location map should not be detached from this report. Our report is not valid if used for purposes other than what is described in the report.

All OSHA regulations such as those regarding proper sloping and temporary shoring of excavations should be followed during the entire construction process.

GESTRA has presented our professional opinions in this report in the form of recommendations. Our opinions are based on our understanding of current project information and related accepted engineering practices at the time of this report. Other than this, no warranty is implied or intended.

Sincerely,

GESTRA Engineering, Inc.

Douglas Dettmers Douglas Dettmers Douglas Dettmers, P.E. Senior Engineer

Eric Jeske, P.E. Senior Engineer

APPENDIX I

SITE LOCATION MAP, BOREHOLE LOCATION MAP, TEST BORING LOGS, SOIL EVALUATION-STORM FORMS, GENERAL NOTES AND SOILS CLASSIFICATION

																PAGE NUMBER
	γ	DC	TT			SO	IL BO	RIN	GΙ	_OG	ì					
	J			S /		PROJECT NAME					D	ATE DRILI	_ING ST	ARTED		1 of 1 BORING NUMBER
						Thomas Farms Developme	ent					4/1	10/20)23	-	PROJECT NUMBER
GES 191	STRAEr WEdge	ngineering erton Avenu	Inc. e			PROJECT LOCATION D				DATE DRILLING ENDED				23083-10 DRILLING RIG		
Pho	aukee, ne: 414- G DRILL	933-7444, FD BY	Fax: 414-933	-7844					NORT	HING		4/	10/20)23		Geoprobe
FIR	M: GE	STRA					B. Gr	riffin	EAST				389	790		21/4" HSA
CRE	W CH	HEF: D.	Harvey				D. Dettr	ners	EAST	ing			2415	434		899.7 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Donth (#)	Elevation	Soil Description and Geological Origir Each Major Unit	1 for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
		0				TOPSOIL (10-inches)	0 9 /90	28.02		<u>717 71</u>						
SS - 1	17	0 1 1 2	2	-	-	LEAN CLAY WITH SAND, brown, moi	0.8 (89 ist, medium s 2 (89	98.9) stiff 97.7)	CL			.50			21.9	Driller noted standing water around boring.
S - 2	18	2 2	6	_	_	CLAYEY SAND WITH GRAVEL, light trace gray mottling, moist, loose	brown at 3',		SC			.50				Gravel = 21.3%
0)		4			¥		3.8 (89	95.9)								Sand = 29.4% P200 =49.2%
SS - 3	12	4 6 4 4	10	5	895.0 	CLAYEY SAND, light brown, wet, med trace gravel	lium dense,		SC							
SS - 4	14	5 5 9 6	14	-	_		8 (89	91.7)								
SS - 5	12	5 9 14 17	23	10	890.0	SILTY SAND WITH GRAVEL, light brows wet, medium dense	own, moist to		CM							
8 - SS	18	3 4 17 16	21	-	_				SIVI							
SS - 7	2	50/2"	R		-	End of Boring at 12.2 f	12.2 (88 ft.	37.5)		네이프						
σ.				 												Auger Refusal at 12.5'. Possible bedrock.
						WATER & CAVE-IN		VATIO	N DA	TA						
	WA			ERE		NG DRILLING: 6 ft.			PTH /		1PLET	ION:				
ŧ	WA		VEL AF	TER	2 HOUF	RS: 4 ft.			.c 1177	M IER						DRY 🗖
NOT	E: Str	atificatio	n lines be	tweer	n soil typ	es represent the approximate boundary; g	jradual transi	ition betv	veen in	-situ soil	layers	should	be ex	pecte	d.	

															PAGE NUMBER
	γ	PC	TT		SOI	L BO	RIN	GΙ	.OG	ì					
	J	1N		í A	PROJECT NAME					DA	TE DRILI	ING ST	ARTED		BORING NUMBER
					Thomas Farms Developmer	nt					4/1	2/20)23		B-2 PROJECT NUMBER
GES 191	STRA Er W Edge	ngineering erton Avenu	Inc. e		PROJECT LOCATION E				DA			IDED		23083-10 DRILLING RIG	
Pho	ne: 414- G DRILL	-933-7444, -ED BY	Fax: 414-933-	7844				NORT	HING		4/	2/20)23		Geoprobe DRILLING METHOD
FIR	M: GE	STRA				C. D	ietz	FASTI	NG			389	629		21/4" HSA
CRE	EW CH	HIEF: D.	Harvey			D. Dettr	ners	LAGI	NO		2415563				906.9 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft) Elevation	Soil Description and Geological Origin f Each Major Unit	for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
-		5				0.6 (90)6.3)								
- SS	15	6 6	12		LEAN CLAY, brown, moist, stiff, trace s	and and gra	avel	CL			1.5	43	26	22.6	
		6		905.0		2(90)4.9)								
		3			CLAYEY SAND WITH GRAVEL, light bi moist, medium dense	rown, very									
S - S	12	7	15					SC							
0		5				4 (90)2.9)								
				† †	SILTY CLAYEY SAND, light brown, moi	st to wet,									
с о	14	8 20	47	5_⊻	around 5'	ur sanu laye									
ŝ	14	27 16													
				+ ¥ -∣											
4		3		900.0			S	SC-SM							
SS	12	0 7	15												
- 5		38		+ -											
SS.	6	50/5"	R	-		89(898)								
				+ +	End of Boring at 8.9 ft.	0.0 (2.211.1.1						Driller noted auger refusal at
				10											8.5'. Possible bedrock.
				895.0											
				15											
				890.0											
				20											
1															
L_						000000	(ATIO)	1.5.4							
	۸/۸					URSFK/		и DA отн л			ION	NMP			WET 🗖
Ť	WA	TER LE	EVEL AT (COMPLETIO	N: 6 ft.		AVE DEF		FTER		JRS:	NMR			
Ţ	WA	TER LE	EVEL AFT	ER 3 HOUR	S: 5 ft.										
NOT	E: Str	atificatio	n lines bet	ween soil type	s represent the approximate boundary; gra	adual transi	tion betwe	een in	-situ soil	layers	should	be ex	pecte	d.	

														PAGE NUMBER
	γ	DC	TT			SOIL BORI	NG I	LOG	Ì					
	J	1N		ΓA		PROJECT NAME			D	ATE DRILI	_ING ST	ARTED		BORING NUMBER
						Thomas Farms Development				4	/7/20)23		B-3 PROJECT NUMBER
GES 191	TRAEn WEdge	ngineering erton Avenu	Inc. e			PROJECT LOCATION D				DATE DRILLING ENDED				23083-10
Milw Pho	aukee, \ ne: 414-	WI 53207 933-7444, I	Fax: 414-933-	7844		Delafield, Wisconsin	INOR	TUNC		4	///20)23		Geoprobe
FIR	M: GE	STRA				C. Dietz	NOR	THING			389	426		21/4" HSA
CRE	W CH	HEF: D.	Harvey			LAB LOG / QC D. Dettmers	EAS	FING			2415	140		SURFACE ELEVATION 915.6 ft
										-E				
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin for Each Major Unit	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Streng (Q , or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
					915.0	TOPSOIL (6-inches) 0.5 (915.1)		<u></u> <u></u>						
	14	2	7	F	_	LEAN CLAY, brown, moist, stiff, trace sand, gravelly				1 50			26.2	
ő		4				(1-2)	CL			1.00			20.2	
				+	-	GRAVEL WITH SAND, light brown, moist, medium		K.C.						
~		3				dense to very dense, sand with gravel layers, (Possible Weathered Bedrock)		$\beta \beta <$						
SS	12	42	55		-	3.6 in/hr but adjusted to 0.50 in/hr due to very		000						
		29		1	-	dense characteristics		$\beta \beta <$						
e		21		_		top of engineered soil at basin 10 (elev 912.0)		°°C						
- SS	10	14 12	26	5				B Co						
		14			910.0	K		° C						
		7		T	-		GP	5 No						
S - 4	14	15	63	-	-	bottom of basin 10 (elev 910.0)		° C						
ö		48						$\beta \beta $						
				+	-	SS-5: with silt		0 C						
- 2		18						$\beta \beta <$						
SS	14	15	65/3		-			°0C						
9 - S	0	50/1"	R	10		10 (905.6)		0°						
õ					905.0	End of Boring at 10.0 ft.								10'. Possible bedrock.
				-	-									
					-									
				_	-									
				-	-									
				15										
					900.0									
				_	-									
				-	-									
					-									
				-	-									
				20										
1				20	895 0									
					555.0									
						WATER & CAVE-IN OBSERVAT	ION D	ATA						
	WA					ING DRILLING: NE ft. 凶 CAVE			1PLET	ION:				
ŧ	WA		VEL AF1	ER N	EHO	JRS: NMR								DRY 🗖
NOT	E: Stra	atificatio	n lines bei	ween	soil typ	es represent the approximate boundary; gradual transition b	etween i	n-situ soi	llayers	should	be ex	pecte	d.	

																PAGE NUMBER	
	21	P C	TI			SOI	LB	ORIN	IG L	.OG	Ì					1	of 1
				U		PROJECT NAME Thomas Farms Developme	nt				D	ATE DRILI	_ING ST	ARTED			B-4
GES 191 Milus	STRAEr WEdge	ngineering erton Avenu	Inc. e			PROJECT LOCATION					D			IDED		2308 DRILLING RIG	3-10
Pho BORIN	ne: 414- G DRILL	933-7444, ED BY	Fax: 414-933-	7844		FIELD LOG			NORT	HING			///20	20		Geop DRILLING METHOD	robe
FIR	M: GE	STRA	Harvev			LAB LOG / QC	(C. Dietz	EASTI	NG			389	283		21/4" SURFACE ELEVATION	HSA
							D. De	ettmers				_	2415	140		919	9.8 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin Each Major Unit	for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments	
		2				TOPSOIL (10-inches)	0	8 (919)		<u>x1/x</u> : <u>x1</u>							
SS - 1	20	1 2 2	3		_	LEAN CLAY, brown, moist, stiff, trace s gravel at 3'	and, wit	:h				1.75			22.1		
SS - 2	10	1 4 6 10	10	-	-				CL			1.00			23.1		
				+	_	SAND WITH SILT AND GRAVEL, light	4	(915.8) moist,									
SS - 3	10	25 31 28 15	59	5_	915.0	very dense, possible cobbles	6	(913.8)	SP-SM								
SS - 4	11	10 10 8 14	18	-	_	CLAYEY GRAVEL WITH SAND, light b medium dense to very dense, sand with	n silt laye	loist, ers	GC							P200 = 32.5%	
SS - 5	10	28 38 50/3	R		-		9.3	(910.5)									
				<u>10</u> -	910.0	End of Boring at 9.3 ft.		. ,								Auger Refusal at 9.5'. Possible bedrock	
				-	905.0												
				_	_												
				- - 20	900.0												
	۱۸/ ۸			FRE	יםו וח נ				DN DA							W	ET 🖸
Ţ	WA	TER LE	VEL AT	COM	PLETIC	N: NE	<u> </u>	CAVE D	EPTH A	FTER		JRS:	NMR			ם W מ	
V	WA		VEL AF			IRS: NMR										U,	
NOT	E: Str	atificatio	n lines be	tween	soil type	es represent the approximate boundary; gr	adual tra	ansition bet	ween in	-sıtu soil	l layers	s should	be ex	pecte	d.		

															PAGE NUMBER
		PC	TI			SOIL E	BORIN	IG L	_OG	ì					
	J	LD	11	Í A		PROJECT NAME				D	ATE DRIL	ING ST	ARTED		BORING NUMBER
GE		aincoring	Inc			Thomas Farms Development					4/*	11/20)23		PROJECT NUMBER
191 Milv	W Edge vaukee, V	NI 53207	B E	7944		Delafield, Wisconsin					4/ ²	11/20)23		DRILLING RIG Geoprobe
BORIN	G DRILL	ED BY	-ax. 414-933	-7044		FIELD LOG	B. Griffin	NORT	HING			389	9182		DRILLING METHOD 21/4" HSA
CRE	EW CH	HEF: D.	Harvey			LAB LOG / QC D.	Dettmers	EAST	ING			2414	1717		SURFACE ELEVATION 917.7 ft
											£				
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft) Elevation		Soil Description and Geological Origin for Each Major Unit		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Streng $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
-		2				TOPSOIL (10-inches)).8 (916.9)								
SS -	9	2 3 3	5			CLAYEY SAND, light brown, moist, very loos dense	e to								
2		3		915	.0										
- SS	15	3 3 4	6		_			SC							
ر اع		2		5			5 (912.7)								
4 SS	15	22 31	38		_	GRAVEL WITH SAND AND SILT, brown and moist, dense to very dense	l gray,	GP-GN							
- SS	3	4 50/5"	R			6	6.9 (910.8)								
				910	.0	End of Boring at 6.9 ft.									Driller noted auger refusal at 6.5. Possible bedrock.
				_	-										
				_											
				10											
				10	_										
				_	_										
				905	.0										
				_	-										
				_	_										
				15											
				_	-										
				_											
				900	.0										
				_	-										
				_	_										
				20											
1					1										
┣─						WATER & CAVF-IN OBS	BERVATIO		TA						
Ţ	WA	TER EN	ICOUNT	ERED DU	RING	B DRILLING: NE ft.		EPTH /		1PLET	ION:	NMR			
I₹	WA WA		VEL AT		ION:	NE I	CAVE D	EPTH A	FTER	0 HOL	JRS:	NMR			
NOT	E: Str	atificatio	n lines be	tween soil t	/pes r	represent the approximate boundary; gradual	transition bet	tween in	-situ soi	layers	should	be ex	pecte	d.	

																	PAGE NUMBER
	21	P C	TI				SO	IL B	ORIN	IG L	-06)					1 of 1
				U	1	PROJECT NAME	arms Developm	ent				D	ATE DRILI	LING ST	ARTED		BORING NUMBER BODIECT NUMBER
GES 191 Milv	STRAEr WEdge aukee.	ngineering erton Avenu WI 53207	Inc. e			PROJECT LOCATI	ion Wisconsin					D			IDED		23083-10 DRILLING RIG
Pho BORIN	ne: 414- G DRILL	933-7444, ED BY	Fax: 414-933-	7844		Delanciu,	FIELD LOG			NORT	THING						DRILLING METHOD
FIR	M: GE	STRA IIEF: D.	Harvey				LAB LOG / QC			EAST	ING			385	677		SURFACE ELEVATION
_	-		,					D. D	ettmers				1	2414	577		912.4 m
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	an	Soil Description d Geological Origir Each Major Unit	n for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
		1				TOPSOIL (11-ir	nches)				<u>x1 /y</u> <u>x1</u>						
s - 1	14	2	3	+	_	LEAN CLAY, br	own. moist. stiff	0.9	(911.5)				1.0			20.1	
S		2															
				+	910.0					CL							
- 2		2	10		_			3	(909.4)								
SS	14	76	13			CLAYEY SAND medium dense t	WITH GRAVEL, light to very dense, brown s	brown, n sand laye	noist, r at 6'								Gravel = 25.0% Sand = 33.2%
				+	_												P200 =41.8%
ς Γ		4		5													
SS	16	9	25									•					
		-		+	_												
4		13										•					
- SS	12	9 10	19	F	905.0												
		43															
		16								SC-SM		•					
3 - S	13	15	29	+	-												
0)		12		10													
				+	_												
9-0	14	24 32	64		_												
ŝ	14	32 25	04									•					
~		64		+	900.0												
- SS	18	55 60/2"	R														
		00/2		-	-	<u> </u>		13.5	(898.9)	-	[/]						
				+	-		End of Boring at 13.2	π.									13.5'. Possible bedrock.
				15													
					_												
				-	_												
				F	895.0												
					_												
				+	_												
				20													
1																	
┣—						1.0/0			<u>- יד א ו וס</u>								
∇	WA		NCOUNT	ERF) DURI		NE ft.					/PLFT	ION.	NMR			WET
Ť	WA	TER LE	EVEL AT	COM		DN: NE			CAVE D	EPTH A	AFTER	0 HOL	JRS:	NMR			DRY □ WET □ DRY □
V	WA		VEL AF	TER C	HOUR	RS: NMR					.,						
NOT	⊨: Str	atificatio	n lines be	tween	soil type	es represent the ap	proximate boundary; g	gradual tr	ansition bet	ween in	-sıtu soi	l layers	should	be ex	pecte	d.	

																	PAGE NUMBER
	γ	DC	TT				SC	IL B	ORIN	IG I	_OG	Ì					
	T			S F	1	PROJECT NAME						D	ATE DRILL	ING ST	ARTED		1 of 1 BORING NUMBER
			_			Thomas F	arms Developm	nent					4/1	1/20)23		B-7
GES 191	STRAEr WEdge	igineering rton Avenu	Inc. e			PROJECT LOCATI	ON .					D	ATE DRILL	ING EN	DED		23083-10
Milv Pho	vaukee, \ ne: 414-	NI 53207 933-7444,	Fax: 414-933-	7844		Delafield,	Wisconsin						4/1	1/20)23		Geoprobe
BORIN FIRI	G DRILL M' GE	ED BY					FIELD LOG	E	8. Griffin	NOR	THING			388	598		DRILLING METHOD 21/4" HSA
CRE	EW CH	IEF: D.	Harvey				LAB LOG / QC	D. D	ettmers	EAST	ING			2414	571		SURFACE ELEVATION 916.3 ft
													6				
Number and Type	Recovery (in)	Blow Counts	N - Value	Denth (ft)	Elevation	and	Soil Description d Geological Origi Each Major Unit	in for t		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strengtl (Q u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
					Ţ	TOPSOIL (10-in	nches)				<u>711^N 71</u>						
SS - 1	18	0 1 2 4	3	_	915.0	LEAN CLAY, bro	own, moist, stiff, trac	0.8 e sand 2	3 (915.5) 2 (914.3)	CL			1.00			22.7	
SS - 2	14	0 2 3 2	5	-	¥ _	LEAN CLAY WI moist, medium s	TH SAND, light brow stiff, trace gravel	n, moist to	o very				0.50			12.3	
SS - 3	12	2 5 6 8	11	5						CL			0-0.25			9.2	
SS - 4	9	3 5 4 3	9	_	910.0 			8	3 (908.3)				0-0.25			9	
SS - 5	14	8 30 50/3"	R	Ţ	_	GRAVEL WITH dense	SAND, brown and gr	 ray, wet, v	ery 3 (907)	GP							
		00,0		10	_		End of Boring at 9.3	ft.	()								Driller noted auger refusal at 9.5'. Possible bedrock.
				_	905. 0												
				-	-												
				F	_												
				-	_												
				15	_												
					900. 0												
					_												
				_	_												
				20													
<u> </u>																	
	14/4				ייסיוס ס												WET 🗖
Ť	WA		VEL AT			N: 3 ft	r.J II.	<u> 18</u>		EPTH							
Ī	WA	TERLE	EVEL AFT	TER 3	BHOUR	S: 0.4 ft.											
NOT	E: Str	atificatio	n lines bet	tween	soil type	es represent the ap	proximate boundary;	gradual tr	ansition bet	tween ir	n-situ soi	l layers	should	be ex	pecte	d.	

									_							PAGE NUMBER	
	$\underline{\gamma}$	PC	TI	2 1			SOIL	. BORIN	IG I	_OG	Ì					1	of 1
		U N	11			PROJECT	NAME				D			ARTED		BORING NUMBER	B-8
GES 191	STRA En	igineering	Inc.			PROJECT					D	4/ ATE DRILI		DED		PROJECT NUMBER	83-10
Milv Pho BORIN	vaukee, \ ne: 414-	NI 53207 933-7444, I ED BY	Fax: 414-933-	-7844		Delafi			NOR	THING		4/1	0/20)23			probe
FIRI	M: GE	STRA					LAB LOG / QC	B. Griffin	EAST	ING			388	826		21/4" SURFACE ELEVATION	" HSA
CRE		IEF: D.	Harvey					D. Dettmers					2415	6086		91	18.7 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation		Soil Description and Geological Origin fo Each Major Unit	r	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments	
-		2				TOPSOIL	(10-inches)	0.8 (917.9)		<u>1, 1, 1</u>							
- SS	16	2 2	4	-	-	SANDY L	EAN CLAY, brown, moist, stiff					1.00	48	27	21.7		
		2		+	-	<u> </u>	top of engineered soil at basin 8 (elev 916.5)										
- 2		2															
SS	13	3	5		915.0	/	0.04 in/hr		CL			1.00			27.6	P200 = 52.8%	
				+	-		bottom of basin 8 (elev 915.5)										
SS - 3	12	1	3	5	_										9.2		
0,		50/5"			_	> Gravelly a	at 5.5'	5.9 (912.8)									
							End of Boring at 5.9 ft.	/								Auger Refusal at 6.5'	
				-	-											Possible bedrock.	
				_	_												
					910.0												
				10	-												
				_	_												
				-													
				-	-												
				_	905.0												
				15													
					_												
				-	-												
					_												
				-	900.0												
				-	-												
				20													
		1	1	1	[WATER & CAVE-IN O	BSERVATIC	N DA	ΔTA		1	I	1	I	I	
$\overline{\underline{\nabla}}$	WA WA		ICOUNT	ERED		NG DRILLIN	NG: NMR ft.	CAVE DE	ЕРТН /			ION: JRS [.]	NMR NMR				
Í	WA	TER LE	VEL AF	TER 0	HOUR	S: NMR			_, ,,,,,		5 100		ALVII V				URY 🗖
NOT	E: Str	atificatio	n lines be	tween s	oil type	s represent	the approximate boundary; grad	lual transition bet	ween in	-situ soil	l layers	should	be ex	pecte	d.		

																PAGE NUMBER
	21	P C	TI			SC	IL B	ORIN	IG L	-06	Ì					1 of 1
	J					PROJECT NAME Thomas Farms Developn	nent				D/	ATE DRILL	ING ST.	ARTED		BORING NUMBER
GES 191 Milu	W Edge	igineering	Inc. e			PROJECT LOCATION					D					23083-10 DRILLING RIG
Pho BORIN	ne: 414- G DRILL	933-7444, ED BY	Fax: 414-933	-7844					NORT	HING		4/	10/20	125		Geoprobe DRILLING METHOD
FIR	M: GE	STRA	Hanvey			LAB LOG / QC	B	3. Griffin	EAST	ING			388	693		21/4" HSA SURFACE ELEVATION
		IILI . D.	l lai vey				D. D)ettmers		1			2415	5182		919.2 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Descriptior and Geological Orig Each Major Uni	۱ in for t		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
		2				TOPSOIL (thickness not recorded)										
SS - 1	15	2 3 3	5	-	_	LEAN CLAY, brown, moist, stiff, trac	 e to with s					1.00			23.8	
SS - 2	17	2 4 3 3	7	-	-		2	4 (915.2)	CL			1.00			26	
SS - 3	13	2 6 3 3	9	5	915.0	CLAYEY SAND WITH GRAVEL, bro loose	wn, moist	to wet,	SC-SM							Gravel = 17.1% Sand = 36.5% P200 =46.4%
SS - 4	17	1 2 3 5	5	_	_	LEAN CLAY, brown, moist, stiff, with at 8.5'	gravel an	d sand	CL			1.50			20	
S - 5	4	11	R	Ť	_		81	R (010 <i>1</i>)				0.50			20.1	
S	4	50/3"	R	 10 15 20	910. 0 905. 0 900. 0 	End of Boring at 8.8	8.8	<u>3 (910.4)</u>				0.50			20.1	Driller noted auger refusal at 9'. Possible bedrock.
						WATER & CAVE-I		RVATIO	DN DA	TA				•	•	
¥ ▼	WA WA	TER E				ING DRILLING: NMR ft.		CAVE D	EPTH A	AT CON	1PLET	ION: JRS: 1	NMR NMR			
Í	WA	TER LE	EVEL AF	TER 0	HOUF	RS: NMR										
NOT	E: Stra	atificatio	n lines be	tween	soil type	es represent the approximate boundary;	gradual tr	ansition be	tween in	-situ soi	layers	should	be ex	pecte	d.	

																PAGE NUMBER	
	γ	RC	TT				SOI	L BOF	RING	LOC)						
	J	1D		í A		PROJECT NAME					D	ATE DRILI	ING ST	ARTED		BORING NUMBER	1 of 1
						Thomas Farm	s Developmer	nt				4	/7/20)23		PROJECT NUMBER	B-10
GES 191 Milv	STRAEr WEdge vaukee. \	igineering rton Avenue NI 53207	Inc. B				consin				D.	ATE DRILI	LING EN			DRILLING RIG	3083-10
Pho BORIN	one: 414- G DRILL	933-7444, I ED BY	Fax: 414-933-	7844		FIEL			NOF	RTHING			,,,,,,			DRILLING METHOD	eoprobe
FIR	M: GE	STRA	Harvev			LAB	LOG / QC	C. Die	EAS	TING			389	054		SURFACE ELEVATION	21/4" HSA
								D. Dettme	rs		1		2415	325		1	920.8 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	So and Ge Ea	oil Description eological Origin 1 ach Major Unit	for	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments	
		_				TOPSOIL (9-inches)		0.0.(00	0)	<u>x 1/2</u> x							
SS - 1	18	2 1 2 3	3	-	920.0	LEAN CLAY, brown, sand, with gravel at 3	moist, stiff to very s	0.8 (92 stiff, trace	0)			1.25-2.0	ю		21.1		
SS - 2	9	2 3 3 4	6	-	_				CL			1.25			18.7		
				+	-												
°.'	15	2 4	20	5	_			5 (915.	8)								
SS	15	16 19	20		915.0	GRAVEL WITH SILT medium dense to der	[°] AND SAND, light l nse	brown, moist,									
SS - 4	19	16 20 25	45	-	_												
- 5		18		+	_				GP-G	M							
SS	14	26 24	52	10	_												
SS - 6	14	9 34 50/4"	R	_	910.0	SS-6: Silty Sand with	gravel layer	11.3 (909.	5)								
					ĺ	End c	of Boring at 11.3 ft.										
				_	_											Auger Refusal at 12'. Possible bedrock.	
				15	-												
				_	905.0												
				_	_												
				-	_												
				\vdash	-												
				20	_												
					900.0												
<u> </u>	WATER & CAVE-IN OBSERVATION DATA											1					
Ţ	WA			ERED) DURI	NG DRILLING: NE ft.			/E DEPTH	AT CO	MPLET	ION:	NMR				
Ţ	WA	TER LE	VEL AT	COM	PLETIC	N: NE		CA	/E DEPTH	AFTER	0 HOI	JRS:	NMR				WET
	WA E: Str	TER LE atificatio	VEL AF1	ER N tween	IE HOU soil type	JRS: NMR es represent the approxir	mate boundary: ara	dual transitio	n between i	n-situ so	il lavers	should	be ex	pecte	d.		

													PAGE NUMBER
	γ	ЪС	TI		SOIL BO	RING	LOC	3					1 of 1
	J	LD	11	A	PROJECT NAME			D	ATE DRILI	ING ST	ARTED		BORING NUMBER B-11
GES	STRA Er	gineering	Inc.		PROJECT LOCATION			D	4 ATE DRILI	///20	J23		PROJECT NUMBER 23083-10
Milv	vaukee, vaukee	NI 53207 933-7444, I	e Fax: 414-933-	-7844	Delafield, Wisconsin	110	D.T. IIII O		4	/7/20)23		DRILLING RIG Geoprobe
FIR	M: GE	STRA			C. I	Dietz	STING			388	3704		21/4" HSA
CRE		HEF: D.	Harvey		D. Detti	mers		1	1	2415	5559	1	917.8 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft) Elevation	Soil Description and Geological Origin for Each Major Unit	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
~		2			TOPSOIL (9-inches) 0.8	(917)	1/ 1/						
- SS	24	2 3 3	5		LEAN CLAY, brown, moist, stiff to very stiff, trace 2 (9	sand CL 915.8)			1.25-2.0	0		25	
SS - 2	18	2 1 1 2	2	915.0	CLAYEY SAND WITH GRAVEL, light brown, very moist, very loose	y SC 913 8)							
SS - 3	9	4 50/3"	R	+ +	LEAN CLAY, light brown, moist, very stiff, trace sa 4.8	and (913) CL			2.5			14.4	
				 910.0									Driller noted auger refusal at 5.5'. Possible bedrock.
				 <u>10 -</u> 									
				905.0									
				 900.0									
					WATER & CAVE-IN OBSFR								
Ţ	WA	TER EN	ICOUNT	ERED DURIN	IG DRILLING: NE ft. 超 C	AVE DEPTH	I AT CO	MPLE	ION:	NMR			
I I I I I I I I I I I I I I I I I I I	WA				N: NE C	AVE DEPTH	AFTER	0 HO	JRS:	NMR			WET DRY
NOT	E: Str	atificatio	n lines bet	tween soil type	s represent the approximate boundary; gradual trans	sition between	in-situ so	il layers	should	be ex	pecte	d.	

																PAGE NUMBER
	γ	PC	TI			SOI	L BO	RIN	GL	_OG	ì					
	J	LD	11	L.		PROJECT NAME					D	ATE DRILI	ING ST	ARTED		BORING NUMBER
GE	STRA Fr	ngineering	Inc			Thomas Farms Developmen	nt					4	/7/20)23		PROJECT NUMBER
191 Milv	W Edge vaukee,	witon Avenu WI 53207	B 5 444 022	7044		Delafield, Wisconsin						4 A	/7/2()23	-	DRILLING RIG Geoprobe
BORIN	IG DRILL	ED BY	-ax: 414-933-	7844		FIELD LOG	C [Dietz	NORT	THING			385	2072		DRILLING METHOD
FIR CRI	M: GE EW CH	STRA HIEF: D.	Harvey			LAB LOG / QC	D Dettr	ners	EAST	ING			2415	5606		SURFACE ELEVATION 917 4 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin Each Major Unit	for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strengtl (Q u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (10.5-inches)				<u>x1 /z</u> <u>x1</u>						
°-1	21	2	4	-	-	LEAN CLAY brown moist stiff traces	0.9 (91 and	16.5)				1 25			18.3	
ö		23														
				+	915.0				CL							
- 2		2					3 (91	14.4)								
SS	14	50/2				GRAVEL WITH SAND, light brown, moi trace to with silt, (Possible Weathered E	st, very der 3edrock)	nse,		[0]						
e.		13		+	-				GP							
- SS	4	15 50/0"	R	5			5 (91	12.4)		0						Driller noted auger refusal at
						End of Boring at 5.0 ft.										5. Possible bedrock.
				-	_											
				-	910.0											
					_											
				-	-											
				10												
				-	-											
				-	905.0											
				_	_											
				-	-											
				15	_											
				-	-											
					900.0											
				-	-											
				-	-											
				20	_											
1																
┢	1	1	1			WATER & CAVE-IN	OBSER	VATIO	N DA	TA		1	l	I	1	1
Ţ	WA			ERED	DURI	NG DRILLING: NE ft.	[题] C/	AVE DE	PTH /		1PLET	ION:	NMR			
Ţ	WA		VEL AT	COMF		N: NE		AVE DE	PTH	FTER		JRS:	NMR			
NOT	∣ vvA E: Str	atificatio	n lines be	tween	E HOU soil type	אואוא: s represent the approximate boundary; gra	 adual transi	ition betw	veen in	-situ soi	layers	should	be ex	pecte	d.	

																PAGE NUMBER
		PC	TT				SOIL	BOR	NG	LOG	;					
	J	1D		M		PROJECT NAME					D.	ATE DRILI	_ING ST	ARTED		BORING NUMBER
						Thomas Farms	Developmen	t				4/*	10/20)23		PROJECT NUMBER
GES 191 Milv	STRAEr WEdge vaukee. \	igineering rton Avenu NI 53207	lnc. e				nein				D,	ATE DRILI $\Delta I'$				23083-10 DRILLING RIG
Pho BORIN	ne: 414- G DRILL	933-7444, ED BY	Fax: 414-933-	-7844		FIELD LO	DG		NOF	THING		-7/	10/20			DRILLING METHOD
FIR	M: GE	STRA	Harvev			LAB LOO	G / QC	B. Griffin	EAS	TING			388	8168		21/4" HSA SURFACE ELEVATION
								D. Dettmers					2415	5163		921.7 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil E and Geolo Each	Description gical Origin fo Major Unit	Dr	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (10-inches)		0.0 (000.0)		<u>7, 1</u> , 7,						
	14	22	6	F	_	LEAN CLAY, brown, mo	st, very stiff	0.8 (920.9)				2 50			25.1	
ő	17	43			920.0			0 (040 7)	CL			2.00			20.1	
				+	+	CLAYEY SAND, light bro	wn, moist to we	<u>2 (919.7)</u> t, very loose								
- 2		2														
SS	15	2	4						SC							
о - 3	1	50/2"	R	+				4.2 (917.5)								
ő	.	00/2		5		End of E	oring at 4.2 ft.									Driller noted auger refusal at
				Ē												4.5'. Possible bedrock.
				L	_											
					915.0											
				-	-											
				Γ												
				-	_											
				10												
					_											
				L												
					910.0											
				+	-											
				Γ												
				-	_											
				15												
					_											
				L	_											
					905.0											
				-	-											
				Γ												
				-	_											
				20												
				20	_											
L																
	14/4				ייסיוס		CAVE-IN C	BSERVA		ATA						WET 🗖
¥ ▼	WA WA	TERIF	EVEL AT			IG DRILLING: NE ft. N: NE		CAVE	DEPTH	AT CON		ION: JRS [.]	NMR NMR			
Ţ	WA	TER LE		TER N	E HOU	RS: NMR										
NOT	E: Str	atificatio	n lines be	tween s	soil type	s represent the approximat	e boundary; grad	dual transition	between i	n-situ so	il layers	should	be ex	pecte	d.	

SOIL BORING LOG OFSTRA Engineering Inc. Description Date DRILLING STARTED BORING NUMBER 19 M Edgeton Avenue Missuekee W152007 Phone: 414-933-7844 Date DRILLING STARTED BORING NUMBER DRUJECT LOCATION Delafield, Wisconsin Date DRILLING STARTED BORING NUMBER DRUJECT LOCATION Delafield, Wisconsin Date DRILLING STARTED BORING NUMBER DRING STRAK CREW CHIEF: D. Harvey FIELD LOG NORTHING DATE DRILLING STARTED Maguinny Neg Soil Description and Geological Origin for Each Major Unit Soil Description and Geological Origin for Each Major Unit Soil Description SORI OPENIC SORI DISCUPPING With Sori Sori Discription and Geological Origin for Each Major Unit Soil Description SORI OPENIC SORI DISCRESSING With Sori Sori Discription SORI DISCRESSING Sori Sori Discription SORI DISCRESSING Sori Sori Discription SORI DISCRESSING Soil Discription SORI DISCRESSING Sori Sori Discription SORI DISCRESSING Sori Discri discription SORI DISCRESSING <	1 of 1 B-14 23083-10 Geoprobe
VIEW PROJECT NAME Date Drilling Started Borning Number 19 VIEdgetion Avenue 1/11/2023 PROJECT NUMBER 19 Wiskderion Avenue 1/11/2023 PROJECT NUMBER 19 PROJECT LOCATION DATE DRILLING STARTED 4/11/2023 Delafield, Wisconsin Date DRILLING ENDED 4/11/2023 BORING RUMBER Missues 4/11/2023 DRILLING RIG DRILLING STARTED Date DRILLING STARTED 0/1/1/2023 DRILLING RIG DRING RUMBER Date DRILLING STARTED 0/1/1/2023 DRILLING RIG BORING RUMEL DE by FIELD LOG NORTHING 0/1/1/2023 DRILLING METHOD FIRM: GESTRA CREW CHIEF: D. Harvey D. Dettmers 2414917 SurFace ELEVATION Use of Oo No No 0/1/1/2003 0/1/1/2003 0/1/1/2003 No Soil Description and Geological Origin for 0/1/2003 0/1/2003 0/1/1/1/2003 Comment No No No Soil Description and Geological Origin for 0/1/2003 0/1/2003 0/1/2003 0/1/2003 0/1/2003 0/1/2003 0/1/2004	1 of 1 B-14 23083-10 Geoprobe
GESTRA Engineering Inc. 1911 W Edgeton Avenue Minautes, WI 532070 Prone: 414-933-7844 Thomas Farms Development 4/11/2023 PROJECT NUMBER BORING DRILLED BY FIRM: GESTRA CREW CHIEF: D. Harvey Preduct Location Delafield, Wisconsin Date DrilLing ENDed 4/11/2023 Date DrilLing ENDed 4/11/2023 DRILLING RIG Boring Drill LED BY FIRM: GESTRA CREW CHIEF: D. Harvey FIELD LOG LAB LOG/QC B. Griffin LAB LOG/QC Northing BRURG BILLING METHOD Boring Drill Leg by FIRM: GESTRA CREW CHIEF: D. Harvey In the provide	B-14 23083-10 Geoprobe
RESTRA Engineering Inc. 191 W Edgeton Avenue Milwaukee, WI 53207 Phone: 414-933-7844, Fax: 414-933-7844 PROJECT LOCATION Date DRILLING ENDED 4/11/2023 Delafield, Wisconsin DORING DRILLED BY FIRM: GESTRA CREW CHIEF: D. Harvey FIELD LOG NORTHING DRILLING RIG Dot to character and the system Image: State of the system FIELD LOG NORTHING DRILLING RIG Dot to character and the system Image: State of the system FIELD LOG NORTHING DRILLING RIG Dot to character and the system Image: State of the system Top Soil Description and Geological Origin for Each Major Unit Image: State of the system Image: State of the system Image: State of the system Image: State of the system TOPSOIL (10-inches) Image: State of the system Image: State of the system Image: State of the system	23083-10 Geoprobe
Phone: 414-933-7444, Fax: 414-933-7444 Defailed, Wisconstring Northing BORILLED BY FIELD LOG NORTHING NORTHING FIRM: GESTRA CREW CHIEF: D. Harvey Image: Comparison of the parison of the	Geoprobe
FIRM: GESTRA CREW CHIEF: D. Harvey B. Griffin 388248 LAB LOG / QC D. Dettmers EASTING 2414917 Jaguardin Pure add L pure All All OG / QC D. Dettmers EASTING 2414917 Jaguardin Pure All All OG / QC Soil Description and Geological Origin for Each Major Unit Image: Comparison of the compar	
D. Dettmets D. Dettmets Status Aumber Aumber Aumber Aumber And Type Aumber And Type Aumber Aumber Aumber Aumber <	21/4" HSA
Number and Type Number (in) Number (in) Blow Counts Recovery (in) Blow Counts N - Value Blow Counts Sclassification Unconfined Comp. Strength Or Op) (st) Moisture Content (%) Plasticity Index	925.2 ft
TOPSOIL (10-inches)	nts
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
N 6 0 18 15 14 14 SILTY SAND WITH CLAY AND GRAVEL, reddish brown, moist, medium dense top of engineered soil at rain garden 7 (elev 921.3)	
n 12 13 21 15 14 36 5 920.0 bottom of rain garden 7 (elev 920.3) SP-SM	
* 7 9 25 00 15 16 25 23 7.6 (917.6) 7.6 (917.6)	ecovery for
10 915.0 10 915.0 10 915.0 1	acovery for sal at 7.5'.
✓ WATER ENCOUNTERED DURING DRILLING: NE ft. ☑ CAVE DEPTH AT COMPLETION: NMR	
V WATER LEVEL AT COMPLETION: NE CAVE DEPTH AFTER 0 HOURS: NMR	
Image:	

					_										PAGE NUMBER
	$\overline{\mathbf{C}}$	PC	TI			SC	DIL BORIN	IG I	_OG	Ì					1 of 1
	J	L D		LT.						D/			ARTED		BORING NUMBER B-15
GE	STRA En	gineering	Inc.			PROJECT LOCATION	nent			D/	4/	ING EN	DED		PROJECT NUMBER 23083-10
Milv	vaukee, \	NI 53207 933-7444,	e Fax: 414-933-	7844		Delafield, Wisconsin					4/1	1/20)23		DRILLING RIG Geoprobe
FIR	ig drill M: GE	ED BY STRA				FIELD LOG	B. Griffin	NOR				387	917		DRILLING METHOD 21/4" HSA
CRE	EW CH	HEF: D.	Harvey				D. Dettmers				1	2414	812		926.8 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Descriptior and Geological Orig Each Major Uni	n in for t	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
SS - 1	15	2 2 2 2	4	_	925.0	TOPSOIL (10-inches) LEAN CLAY, brown, moist, stiff	0.8 (926)				1.0			21.8	
SS - 2	8	1 4 5 5	9	-	_		4 (922.8)	CL			1.5			27.3	
SS - 3	17	4 4 9 5	13	5		CLAYEY SAND, light brown, moist to to very dense, trace to with gravel	o very moist, loose								
SS - 4	12	4 5 5 6	10	_	920.0	SS-4: black sand layer		SC							
SS - 5	0	5	R				8 9 (917 9)								
SS		50/5"	ĸ	10 - - 15 - 20	915.0 - - - - 910.0 - - - - - - - - - - -	End of Boring at 8.9	<u>8.9 (917.9)</u> ft.								Driller noted auger refusal at 9.5'. Possible bedrock.
	WA			ERE		WATER & CAVE-I NG DRILLING: NE ft.					ION:	NMR			
Ī	WA	TER LE	VEL AT	COM	PLETIO	N: NE	CAVE D	EPTH /	AFTER	0 HOL	JRS:	NMR			
NOT	WA E: Str	TER LE	VEL AFT	ER 0 tween	HOUR soil type	 NMR es represent the approximate boundary; 	gradual transition be	tween ir	n-situ soi	l layers	should	be ex	pecte	d.	

	γ	PC	TI			SOI	SOIL BORING LOG											
	J	<u>L</u> D	11	L	1						D		ING ST	ARTED		BORING NUMBER B-16		
GES	STRA En	igineering	Inc.			PROJECT LOCATION	PROJECT LOCATION									PROJECT NUMBER 23083-10		
Milv	ne: 414-	NI 53207 933-7444,	e Fax: 414-933-	7844		Delafield, Wisconsin			NOD			4/1	1/20)23		DRILLING RIG Geoprobe		
FIR	M: GE	STRA						C. Dietz					387	955		21/4" HSA		
CRE	EW CH	HEF: D.	Harvey				D. D	Oettmers				1	2414	415		930.5 ft		
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin Each Major Unit	for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_{\rm u} \text{ or } \mathbf{Q}_{\rm p})$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments		
		1			930.0	TOPSOIL (9-inches)	0.9	3 (020 7)		<u>, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</u>								
SS - 1	18	1 1 2 2	3		_	LEAN CLAY, brown, moist, stiff, trace s	sand	5 (929.7)				1.0			21.2			
SS - 2	9	2 17 5 5	22	-	_		2	1 (926 5)	CL			1.5			22.8			
SS - 3	9	2 3 4 3	7	5	925.0	LEAN CLAY WITH SAND, light brown t medium stiff, trace to with gravel	to brown	n, moist,	CL			0.5			12.3			
SS - 4	6	2 5 6	11	-	_ _	GRAVEL WITH SAND AND SILT, light wet, medium dense to very dense	brown,	6 (924.5) moist to	GP-GM									
9 - S	4	50/5"	R	+	Ā ⁻		8.4	4 (922.1)										
ő		00/0				End of Boring at 8.4 ft.										Driller noted auger refusal at		
				- - - - 15 - - - - 20	920.0 - - - - - - - - - - - - - - - - - -											8.5'. Possible bedrock.		
∇	\\/A			FREI	ויפו וח ר		OBSE ∣⊯≋		DN DA			ION				WET 🗖		
Ť	WA	TER LE	EVEL AT	COM	PLETIC	DN: 8 ft.		CAVE D	EPTH /	AFTER		JRS:	NMR			DRY U		
	WA E: Str	TER LE	VEL AFT	TER 1 tween	soil type	JRS: 7.5 ft. es represent the approximate boundary: or	adual tr	ansition bet	ween in	-situ soil	lavers	should	be ex	pecte	d.			
	54																	

						1												
	Tr	7C	TI			S	SOIL BORING LOG											
U	J	20	11	L	1						D		ING ST	ARTED		BORING NUMBER B-17		
GESTR	RA Eng	gineering	Inc.			PROJECT LOCATION	PROJECT LOCATION									PROJECT NUMBER 23083-10		
Milwauk Phone:	kee, W	/I 53207 33-7444, F	- Fax: 414-933-	7844		Delafield, Wisconsin			NODI			4/1	1/20)23		DRILLING RIG Geoprobe		
FIRM:	GES	STRA				FIELD LOG		C. Dietz					388	402		21/4" HSA		
CREW	/ CH	IEF: D.	Harvey				D. D	ettmers				1	2414	212		925 ft		
Number and Type Recoverv	(in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Descriptic and Geological Ori Each Major Ui	on igin for nit		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments		
SS - 1	15	1 1 2 3	3	-	-	TOPSOIL (6.5-inches) LEAN CLAY, brown, moist, stiff, tra	0.ť ace sand	5 (924.5)	CL			1.5			26			
SS - 2	11	1 3 4 12	7	-	-	SAND WITH SILT AND GRAVEL, medium dense to very dense	3.9	5 (921.5) t to wet,							13.2			
SS - 3	15	4 17 14 9	31	5	920 <u>.0</u>	SS-3: sandy lean clay layer												
5 SS - 4	15	14 17 12 9	29	-	_ _													
- SS	2	50/5"	R	-		End of Boring at 8.	8.4 .4 ft.	4 (916.6)	-							Driller peted ouger refugel at		
				- - - 15 - - 20	915 <u>.0</u> - 910 <u>.0</u> - 905 <u>.0</u>	End of Boring at 8.	4 ft.									Driller noted auger refusal at 8.5'. Possible bedrock.		
∇	WAT	FER EN	ICOUNT	EREI	D DURI	WATER & CAVE	-IN OBSE 鼦	CAVE D			1PLET	ION:	NMR					
Į į	WAT	FER LE	VEL AT	COM	PLETIC	DN: 8 ft.		CAVE D	EPTH A	FTER	0 HOL	JRS: I	NMR					
	WAT Stra	TER LE	VEL AFT	TER 2 tween	2 HOUR soil type	RS: 8 ft. es represent the approximate boundar	y; gradual tr	ansition bet	tween in	-situ soil	layers	should	be ex	pecte	d.			

																	PAGE NUMBER
	γ	PC	TI				SO		1 of 1								
	J	L'D	11	H								DA			ARTED		BORING NUMBER B-18
GE 191	STRA Er W Edge	ngineering erton Avenu	Inc. e			PROJECT LOCATIO	PROJECT LOCATION								IDED		PROJECT NUMBER 23083-10
Milv Pho BORIN	vaukee, ne: 414- G DRILL	WI 53207 933-7444, I ED BY	Fax: 414-933-	-7844		Delafield, Wisconsin							4/1	1/20)23		DRILLING METHOD
FIRI CRE	M: GE EW CH	STRA HEF: D.	Harvev				LAB LOG / QC	B	Griffin	EAST	ING			388	3286		21/4" HSA SURFACE ELEVATION
								D. De	D. Dettmers				6	2414	1066		931.2 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	and	Soil Description d Geological Origir Each Major Unit	n for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
-		2				TOPSOIL (6-incl	nes)	0.5	(930.7)								
- SS	12	2 3 3	5	-	930. 0 _	LEAN CLAY, bro	wn, moist, stiff, trace	sand and	gravel	CL			1.0			26.5	
- 2	44	24						3	(928.2)								
SS		16 20	20			GRAVEL WITH	SILT AND SAND, ligh o dense	t brown, r	noist,								
e		16		F						GP-GN							
4 SS -	13	15 17 18	32	<u>p</u>	_												P200 = 17.9%
SS -	1	50/3"	R	+	925.0		End of Boring at 6.3 f	6.3	(924.9)		βŶĺk						Driller noted ourser refugel at
				- - - - - - - - - - - 20	- - 920. 0 - - - 915. 0 - - -												6.5'. Possible bedrock.
∇	WA		NCOUNT	ERED	DURIN	WAT IG DRILLING: N	<u>ΓER & CAVE-IN</u> JE ft.	OBSE	CAVE D	ON DA		1PLET	ION:	NMR			
Ţ	WA			COMP		N: NE			CAVE D	EPTH A	FTER	0 HOL	JRS:	NMR			WET DRY
NOT	E: Str	atificatio	r lines be	ı ⊨R 0 I tween s	HOURS	s: NIVIK represent the app	proximate boundary; g	radual tra	insition be	tween in	-situ soi	l layers	should	be ex	pecte	d.	

					_													
	$\overline{\mathbf{T}}$	PC	TI				SUIL BORING LOG											
		L D		L		PROJECT NAME		nt				D	ATE DRILI		ARTED		BORING NUMBER B-19	
GE 191	STRA En W Edge	ngineering erton Avenu	Inc. e			PROJECT LOCATION	PROJECT LOCATION								DED		PROJECT NUMBER 23083-10	
Milv Pho BORIN	vaukee, \ ne: 414- G DRILL	WI 53207 933-7444, ED BY	Fax: 414-933-	-7844		Delafield, Wisc	Delafield, Wisconsin						4/1	1/20)23		Geoprobe	
FIR	M: GE	STRA	Llanuau			LAB	LOG/QC	B. G	riffin	EAST	ING			387	504		21/4" HSA SURFACE ELEVATION	
CRE			narvey					D. Dettr	mers				1	2414	212	1	934.9 ft	
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	So and Ge Ea	il Description ological Origin ch Major Unit	for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments	
		4				TOPSOIL (10")		0.8.(0	3/1 1)		<u>, 17 1</u>							
SS - 1	18	4 5 4 5	9	-	_	CLAYEY SAND, brow	vn, moist, loose to	medium de	ense	SC							P200 = 44.5%	
3 - 2	18	4 5	18	Ļ	_	0.000		3 (9	31.9)									
ŭ		13 12		+	-	Sand, drown, moist,	medium dense	4.7 (9	30.2)	SP								
SS - 3	18	15 18 22 22	40	5	930.0	CLAYEY SAND, red to dense, trace gravel	brown, dry to mois	st, dense to	very								P200 = 42.9%	
SS - 4	18	9 20 24 22	44	-	-					SC								
SS - 5		16 22 50/1"	R		_			9.1 (9	25.8)								Driller did not record recovery on field loa.	
ό.		50/1"		 	925.0 - - - - 920.0 - - - - - - - - - - - - - - - - - -	End o	of Boring at 9.1 ft.	9.1 (9	25.8)								Driller noted auger refusal at 9.5'. Possible bedrock.	
∇	WA		NCOUNT	ERE) DURI	WATER	₹ & CAVE-IN	OBSER 阏 ი		N DA		IPLET	ION:	NMR			WET	
Ţ	WA	TER LE	EVEL AT	COM	PLETIC	N: NE		C	AVE DE	EPTH A	FTER		JRS:	NMR				
NOT	WA E: Stra	TER LE	VEL AF	TER 0 tween	HOUR soil type	S: NMR as represent the approxim	mate boundary; gr	adual trans	ition betw	ween in	-situ soil	layers	should	be ex	pecte	d		

																	PAGE NUMBER	
	γ	PC	TI				SC		4 -5 4									
	J	LD	11	H		PROJECT NAME						D	ATE DRILI	ING ST	ARTED		BORING NUMBER	
CE		aincorina	Inc			Thomas F	I nomas Farms Development								23		PROJECT NUMBER	
191 Milv	W Edge vaukee, V	rton Avenu NI 53207	B	70.14		Delafield, Wisconsin							4/1	1/20)23		DRILLING RIG Geoprobe	
BORIN	G DRILL	933-7444, I ED BY	-ax: 414-933-	7844		,	FIELD LOG				HING			387	522		DRILLING METHOD	
FIR	M: GE EW CH	STRA IIEF: D.	Harvey				LAB LOG / QC	<u>ם</u> ת ת	ettmers	EAST	ING			2414	883		SURFACE ELEVATION 925.6 ft	
								0.0					6					
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	an	Soil Descriptio d Geological Orig Each Major Un	n gin for iit		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strengtl (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments	
		2			925.0	TOPSOIL (9-ind	ches)	0.8	(02/ 8)		. <u>71</u> . 7							
SS - 1	10	2 3 3 4	6	-	-	LEAN CLAY, br moist, very soft 07	rown with gray and b to very stiff, trace sa in/hr	olack mottlin and	g,				1.0			24.7		
SS - 2	14	2 4 3 4	7	-	_	top o (elev	of engineered soil at ra v 922.0)	iin garden 5		CL			2.0	35	20	22.1		
SS - 3	10	1 0 1	1	5	920.0	SS-3: with silt	om of rain garden 5 (e	lev 921.0)					0-0.25			20.6		
- 4		0		+	-	SS-4: with silt										10.0		
SS	0	50/1"	R	-	F	~	End of Boring at 6.6	6 6 ft.	6.6 (919)				0.5-1.5			18.6	Driller noted auger refusal at	
				- 10 - - - 15 - - - - 20	- 915.0 - - - 910.0 - - - - - 905.0													
						WA	TER & CAVE-		RVATIC	N DA	TA					1		
Í	WA	TER LE	VEL AF1	FER 0 I	HOUR	S: NMR												
NOT	E: Str	atificatio	n lines bet	tween s	oil type	s represent the ap	proximate boundary	r; gradual tra	ansition betw	ween in	-situ soil	layers	should	be ex	pecte	d.		
														_	PAGE NUMBER			
----------------------	------------------------------------	--------------------------------	---------------	---------------------------------	---	----------------------------------	-------------	---------------------	-------------	--------------	---	--------------	------------------	----------------------	--------------------------------			
		P C	TI	2 1	SC	IL BO	RING) L	.OG	ì					1 of 1			
		L D			PROJECT NAME					D	ATE DRILL		ARTED		BORING NUMBER B-21			
GE 191	STRA Er W Edge	ngineering erton Avenu	Inc. e		PROJECT LOCATION					D		ING EN	IDED		PROJECT NUMBER 23083-10			
Milv Pho BORIN	vaukee, \ one: 414- IG DRILL	WI 53207 933-7444, ED BY	Fax: 414-933-	7844	Delafield, Wisconsin		1	NORTH	HING		4/1	2/20)23		DRILLING METHOD			
FIR CRI	M: GE EW CH	STRA HEF: D.	Harvev		LAB LOG / QC	<u> </u>	lietz	EASTIN	NG			387	595		21/4" HSA SURFACE ELEVATION			
_			,			D. Dettr					_ د	2415	285		917.7 π			
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft) Elevation	Soil Descriptior and Geological Orig Each Major Uni	ı in for t		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strengt (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments			
s - 1	9	3			TOPSOIL (8-inches)	0.7 (917)											
S		50/3		+ $+$	GRAVEL WITH SAND, brown and lin dense to very dense, possible cobble 1'	jht brown, moi es or boulders	st, at											
SS - 2	3	10 18 26 35	44	915.0			C	GP										
SS - 3	1	50/1"	R	_	End of Boring at 4.6	4.6 (91	3.1)		<u>,00</u>						Driller noted auger refusal at			
				 10 _											4.5". Possible bedrock.			
∇	WA		NCOUNT		WATER & CAVE-I	N OBSER\	ATION	DA TH A	TA ⊤ COM	IPLET	ION:	NMR			WET			
Ţ	WA		VEL AT	COMPLETIO	N: NE		AVE DEPT	THA	FTER		JRS:	NMR			DRY DRY DRY DRY			
	WA	TER LE atificatio	VEL AFT	TER 0 HOURS	S: NMR s represent the approximate boundary;	gradual transi	tion betwee	en in-	situ soil	layers	should	be ex	pecte	d.				

																PAGE NUMBER	
	γ	PC	TT				SOIL	BOR	NG	LOG)						
	J	LD		I A		PROJECT NAME					0	ATE DRIL	LING ST	ARTED		BORING NUMBER	1 of 1
						Thomas Farms D	evelopmen [•]	t				4/*	12/20)23	-	PROJECT NUMBER	B-22
GES 191 Milv	W Edge waukee, \	igineering rton Avenu NI 53207	Inc. e				nein					ATE DRIL $\frac{\Delta}{2}$	LING EN 12/2(-	DRILLING RIG	<u>3083-10</u>
Pho BORIN	G DRILL	933-7444, ED BY	Fax: 414-933-	7844		FIELD LC	IGIII	0.01	NOF	THING						G DRILLING METHOD	eoprobe
FIR	M: GE EW CH	STRA IIEF: D.	Harvev			LAB LOG	/ QC	C. Dietz	EAS	TING			387	698		SURFACE ELEVATION	
	-		,					D. Dettmers					2415	438			916.3 π
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil D and Geolo Each	escription gical Origin fc Major Unit	Dr	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments	
		0				TOPSOIL (9-inches)		0.8 (915 5)		<u></u>							
SS - 1	20	0 1 2	1	-	915.0	LEAN CLAY WITH SANI gravel, layer of brown/gra), brown, moist, ıy silty clay at 5'	stiff, trace	<u> </u>			1			22.8		
SS - 2	19	0 3 3 3	6	-	_				CL			2.25			23.5		
				+	-												
с 2-3	10	2	3	5	_			<u>5 (911.3)</u>				15				0	
<i>i</i> 0		2 5				medium dense	AVEL, DIOWN, I	moist,								Sand = 33.6% P200 = 45.4%	
				+	910. 0				SC-S	v /						1 200 -43.470	
S - 4	23	6 8	20	_	_												
2 2		12 29			_	GRAVEL, light brown, mo	oist, medium de	7.5 (908.8) nse, with sand	GP	KAU							
- SS	1	50/1"	R	+		End of B	oring at 8.1 ft.	8.1 (908.2)		0/0						Driller noted auger refu	usal at
				_	_		5									8.1'. Possible bedrock	
				10													
					_												
				_	905 D												
					303.0												
				-	-												
					_												
				-	-												
				15	_												
				-	900. 0												
					_												
				-	-												
					_												
1				20	-												
L																	
	14/4				ייסיוס		CAVE-IN C	BSERVA		ATA							
≚ ▼	WA		EVEL AT		PLETIO	N: NE			DEPTH	AFTER	0 HO	URS:	NMR				
Y	WA	TER LE	VEL AFT	TER 0	HOUR	S: NMR						, .					
NOT	E: Str	atificatio	n lines bet	tween	soil type	s represent the approximate	boundary; grad	dual transition	between i	n-situ so	il layer	s should	l be ex	pecte	d.		

															PAGE NUMBER
	γ	DC	TT			SOIL B	ORING	3 L	. O G						
	Т			S A		PROJECT NAME				DA		ING ST	ARTED		1 of 1 BORING NUMBER
						Thomas Farms Development					4/1	1/20	23		B-23
GES 191	STRAEr WEdge	ngineering erton Avenu	Inc. e			PROJECT LOCATION				DA	TE DRILL	ING EN	DED		23083-10
Milv Pho	aukee, \ ne: 414-	WI 53207 933-7444,	Fax: 414-933	7844		Delafield, Wisconsin	r				4/1	1/20)23		Geoprobe
BORIN FIRI	G DRILL	ED BY				FIELD LOG	C. Dietz	NORT	HING			387	716		DRILLING METHOD 21/4" HSA
CRE	EW CH	HEF: D.	Harvey			LAB LOG / QC D. E	Dettmers	EASTI	NG			2413	881		SURFACE ELEVATION 940.4 ft
											c				
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin for Each Major Unit		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strengt $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
					940.0	TOPSOIL (10-inches)			<u>x17</u> <u>x1</u>						
SS - 1	20	2 4 12 9	16	-	_	0.1 CLAYEY SAND WITH GRAVEL, brown, moist medium dense	3 (939.6)								
SS - 2	9	9 9 9 7	18	-	_		:	SC							
SS - 3	9	3 9 12 10	21	5	935.0		6 (934.4)								
SS - 4	12	7 10 10 7	20	-	-	SAND WITH SILT AND GRAVEL, light brown, medium dense	moist, SF	P-SM							
SS - 5	16	19 24 33 29	57	-	-	SILTY SAND WITH GRAVEL, light brown to be moist, very dense, trace clay	'own,	SM							
85 - 6	5	21 50/2"	R		930.0	10. End of Boring at 10.7 ft.	7 (929.7)								Driller noted auger refusal at
				- - <u>15</u> - - - 20	- 925.0 - - - 920.0										
						WATER & CAVE-IN OBSI	RVATION	DA	TA						11 Januar 📼
<u>V</u>	WA			ERED		NG DRILLING: NE ft.	CAVE DEP		T COM	PLET	ION:	NMR			
I ↓	WA						CAVE DEP	IHA	IF FER () HOL	JRS: I	NMR			
NOT	E: Str	atificatio	n lines be	tween	soil type	is represent the approximate boundary; gradual tr	ansition betwee	en in	-situ soil	layers	should	be ex	pecte	d.	

																PAGE NUMBER
	γ	DC	TT			SC)IL B	ORIN	IG L	_OG	Ì					
	J			K A		PROJECT NAME					D	ATE DRILI	ING ST	ARTED		1 of 1 BORING NUMBER
			-			Thomas Farms Developn	nent					4/1	1/20)23		B-24 PROJECT NUMBER
GES 191	STRA Er W Edge	ngineering erton Avenu	Inc. e			PROJECT LOCATION					D,	ATE DRILI		DED		23083-10
Pho	ne: 414-	WI 53207 933-7444, ED BY	Fax: 414-933-	7844					NOR	HING		4/	1/20)23		Geoprobe
FIR	M: GE	STRA						C. Dietz	FAST	ING			387	950		21/4" HSA
CRE	EW CH	HEF: D.	Harvey				D. C	Dettmers	LASI				2413	836		940.7 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Descriptior and Geological Orig Each Major Uni	۱ in for t		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
					040.0	TOPSOIL (8-inches)		0.7 (040)		<u>, 17</u>						
SS - 1	14	2 6 12 12	18	-	940.0	SAND WITH GRAVEL, light brown, dense	moist, med	dium	SP	1, <u>, , , , ,</u>						
				+	+	CLAYEY SAND light brown moist	trace to wi	2 (938.7) th gravel		////						
3 - 2	17	3 3	6		_		1000 10 11	an graver								
SS		3 3	0													
				Ť	-	-			SC							
S - 3	24	1 4	10	5												
05		7			935.0 _											
4		3						7 (933.7)								
SS	21	14 16 18	30			SILTY/CLAYEY SAND WITH GRAV	EL, light b	rown,								
		5		+	-	SS-4: 10" clay layer			SC-SM							
3 - SS	21	14 22	36	+	-	_										
		50/3"		10		End of Boring at 9.8	9.8 ft	8 (930.9)	-							
					930.0	End of borning at 9.0	п.									
				-	-	-										10.5'. Possible bedrock.
				F	-											
					_											
				-	-											
				15												
					925.0											
				-	-	-										
				Γ	1											
				-	_	-										
				20												
1				20												
					920.0											
			10.61.11.11			WATER & CAVE-I			DN DA	TA						
	WA WA		VEL AT			ING DRILLING: NE ft.	<u> </u>		ЕРТН А ЕРТН 4	AL CON		ION:	NMR NMR			
Ţ	WA	TER LE	EVEL AFT	ER 0	HOUR	RS: NMR										
NOT	E: Str	atificatic	n lines bet	ween	soil type	es represent the approximate boundary;	gradual tr	ansition bet	ween in	-situ soil	layers	should	be ex	pecte	d.	

														PAGE NUMBER
	γ	DC	TT			SOIL BOR	ING	LOC	3					
	J	1D		A		PROJECT NAME			D	ATE DRILI	ING ST	ARTED		BORING NUMBER
						Thomas Farms Development				4/1	2/20)23		B-25 PROJECT NUMBER
GES 191	TRAEn WEdge	igineering erton Avenue	Inc.			PROJECT LOCATION			D,	ATE DRILI	ING EN	IDED		23083-10
Milw Pho	aukee, \ ne: 414-	NI 53207 933-7444, I	ax: 414-933-	7844		Delafield, Wisconsin	hior	TUNO		4/1	2/20)23		Geoprobe
FIRM	M: GE	STRA				C. Dietz	z	THING			388	347		21/4" HSA
CRE	W CH	HEF: D.	Harvey			LAB LOG / QC D. Dettmers	s EAS	TING			2413	452		SURFACE ELEVATION 932.6 ft
										£				
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin for Each Major Unit	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Streng (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (7.5-inches)	2)	<u>×1/</u>	· ·					
	18	2	3	F	_	LEAN CLAY WITH SAND, brown, moist, stiff, possible				15			21 5	
ŝ	10	2				cobble or boulder at 2.5				1.5			21.5	
2				+ .		\mathbf{N}								
- SS	6	1 50/2"	R	9	30.0	top of engineered soil at basin 2				1.0			25	
				Ť		(elev 931.0)								
		6			_	4 (928.6	<u>3)</u>							
S - 3	9	6	12		K	SILTY SAND WITH GRAVEL, moist, medium dense								P200 = 19.5%
S		5		5	-	1.05 11/11								1 200 - 10.070
				1	_	bottom of basin 2 (elev 928.0)	SM							
- 4	40	3	10	L I					1					
SS	12	5	12	9	25.0									
		5		↓ ⊻	+		⁵⁾							
5		15				GRAVEL WITH SAND, brown, very dense, trace sit		$[\circ \circ]$						
- SS	6	30 18	48	-	-]					
		14		10				$[\circ]$						
				1			GP	60						
9 - 9 9 - 0	12	18 41	65	F	_			$ \circ 0 \rangle$						
š	.2	24						60						
- S	1	50/1"	R	+ .		12.1 (920.5 End of Boring at 12.1 ft	5)		-					Driller noted auger refusal at
0				9	20.0	Life of boring at 12.1 ft.								12'. Possible bedrock
				-	_									
				15	_									
				-	_									
				9	15.0									
					_									
				-	-									
				20										
				<u> </u>	-									
	-					WATER & CAVE-IN OBSERVA	TION D	ATA						14 <i>1</i> 000 - 1
	WA					G DRILLING: 8 ft. 路 CAV				ION:				
Ť	WA	TER LE	VEL AFT	ER 3 H	OURS	: 7 ft.				5110.				
NOT	E: Stra	atificatio	n lines bet	ween soi	l types	represent the approximate boundary; gradual transition	n between i	n-situ so	oil layers	should	be ex	pecte	d.	

																		PAGE NUMBER
	γ	PC	TI					S	OIL	BORI	NG L	_OG	Ì					
	J	LD	11	L	1	ł	PROJECT NAME						D	ATE DRILL	ING ST	ARTED		BORING NUMBER
GES	STRA Er	naineerina	Inc.					arms Develop	ment						1/20)23		PROJECT NUMBER 23083-10
191 Milw Pho	W Edge aukee, ¹ ne: 414-	erton Avenu WI 53207 933-7444	e Fax: 414-933-	7844			Delafield, V	Visconsin						4/1	1/20)23		DRILLING RIG Geoprobe
BORIN								FIELD LOG		C. Ray	NORT	HING			388	013		DRILLING METHOD 31/4" HSA
CRE		HEF: S.	Gonyer					LAB LOG / QC	D	. Dettmers	EAST	ING			2413	386		SURFACE ELEVATION 938.3 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation		and	Soil Descripti Geological Or Each Major U	on igin for nit		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						Т	OPSOIL (8-inch	nes)				<u></u>						
SS - 1	13	1 1 2 2	3	-	-	L	EAN CLAY, brow	wn, moist, very st	iff, trace s	0.7 (937.6) and				2.5			21.4	
SS - 2	14	1 3 3 3	6	-	935.0	0				<u>4 (934.3)</u>				2.0			26.9	
SS - 3	14	1 2 3 4	5	5	¥ _		top of end (elev 933	nt brown, moist, m 0.11 in/hr Igineered soil at bas 3.5)	iedium sti	ff to stiff	CL-ML			0.5-1.0			19.3	P200 = 97.2%
SS - 4	15	1 3 14 5	17	-	930 1	S. W	ANDY LEAN CL et, stiff	AY WITH GRAV	EL, browr	7 (931.3) , moist to				1.0			20.2	
SS - 5	15	4 15 17 19	32	-	-		botto	om of basin 1 (elev §	930.5)		CI			1.5			9.3	
SS - 6	14	5 14 19 21	33	_	¥.		S-6: rock pieces	S						1.5			8.3	
SS - 7	19	9 45 19 16	64	_	925.0 ▽	0 G Ve	RAVEL WITH S ery dense, rock	SILT AND SAND, pieces (possible v	light brow weathered	13 (925.3) n, wet, l bedrock)								
SS - 8	12	6 24 50/3"	R	15	-		E	nd of Boring at 15	5.3 ft.	15.3 (923)	GP-GN							
				- - 20	- 920.(-	- - 0 -												Driller noted auger refusal at 16'. Possible bedrock.
	14/4				םי ום ר			ER & CAVE	-IN OB	SERVAT			101 FT					WET 🗖
$\overline{\mathbf{V}}$	WA WA		VEL AT			KING E ION:	JRILLING: 14 11 ft.	4 fl.		CAVE	DEPTH /	AFTER	1PLET	JRS: 1	NMR			
Ţ	WA	TER LE		TER 4	8 HOI	URS:	5 ft.											
NOT	E: Str	atificatio	n lines be	tween	soil typ	pes rep	present the appr	roximate boundar	y; gradua	l transition b	etween in	-situ soi	layers	should	be ex	pecte	d.	

																		PAGE NUMBER
	γ	ЛC	TD					SC	DIL B	ORIN	IG I	_OG	Ì					1 of 1
	J	L D		L	1				4				D			ARTED		BORING NUMBER B-27
GE3	STRA Er	ngineering	Inc.				PROJECT LOCATIO		nent				D/	4/	ING EN	JZ3		PROJECT NUMBER 23083-10
Milv	ne: 414-	WI 53207 -933-7444,	- Fax: 414-933-7	7844			Delafield, V	Visconsin			NOP			4/1	2/20)23		Diedrich D50 ATV
FIR	M: GE	STRA							E	3. Griffin	FAST				387	887		31/4" HSA
CRE	EW CH	HIEF: A.	Woerpel	1		1			D. [Dettmers				1	2413	8473		939 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation		and	Soil Description Geological Orig Each Major Uni	n in for t		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_{u} \text{ or } \mathbf{Q}_{p})$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
		2					OPSOIL (4-inch	ies)	0.3	3 (938.7)/								
SS - 1	4	23	5	╞			EAN CLAY, darl	k brown, moist, meo	dium stiff 1.	1 (937.9) /				0.5			25	
0,		4				٦	EAN CLAY, brow	wn, moist, medium	stiff, trace	sand /								
~		2					EAN CLAY, light	it brown with gray m	nottling, me	` <i>u</i> pist,								
SS -	15	3 4	7	+		-								1.0	25	10	18.9	
		5			935.	0												
e		2		_			top of e	angineered soil at basi 33.5)	in 1									
- SS	16	2 2	4	P	-	V								1.0			18	
		4		+														
4		1				s	ANDY LEAN CL	LAY WITH GRAVEL	6.t _, light bro	5 (932.5) wn,								
- SS	11	34	7	F		- m	noist, stiff).11 in/hr	, C	,				1.5			10.1	
		8		+			0.5	_										
- 2		5			930.		3-5. TOCK pieces	5										
· SS	10	28 30	58	F			bottc	om of basin 1 (elev 93	0.5)		CL						8.8	
		10		10	¥ _	_												
9 -		19																
SS	13	17	29	F	<u>V</u>	1				5 (927.5)								
				+		- G	RAVEL, brown,	, wet, medium dense	e to very c	lense								
2 - 1	10	9 5						5.0 11/11										
SS	10	23 23	28								GP	b						
~				+	925.	0 cl	ayey gravel at 1	14'				0 C						
ss - 8	12	4 7	R	15	<u> </u>				15.2	2 (923.8)								
		50/2"		-			E	nd of Boring at 15.2	2 ft.									Driller noted auger refusal at 15'. Possible bedrock.
				F		-												
				-		_												
				F	-													
				-	920.	0												
				20														
1					_													
⊢							WAT	ER & CAVE-I	N OBSI	ERVATIO		ATA						
$\underline{\nabla}$	WA	TER E	ICOUNT	ERE) DUR	RING I	DRILLING: 1	1.5 ft.	题	CAVE D	EPTH /	AT CON	1PLET	ION:	NMR			WET DRY
I I I I I I I I I I I I I I I I I I I	WA				PLETI	ON:	15 ft.			CAVE D	EPTH /	AFTER	0 HOL	JRS: I	NMR			
NOT	E: Str	atificatio	n lines bet	ween	soil typ	bes re	present the app	roximate boundary;	l gradual tr	ansition bet	ween ir	-situ soi	l layers	should	be ex	pecte	d.	

															PAGE NUMBER
		PC	TT			SOIL BO	RIN	GΙ	.OG						
	J	1D		1	1	PROJECT NAME				DA	TE DRILL	ING ST	ARTED		BORING NUMBER
						Thomas Farms Development					4/1	1/20)23		PROJECT NUMBER
GE 191 Milv	W Edge waukee, '	ngineering erton Avenue WI 53207	Inc. e			PROJECT LOCATION				DA	TE DRILL	.ING EN	DED 123		23083-10 DRILLING RIG
Pho BORIN	ne: 414- G DRILL	-933-7444, I .ED BY	Fax: 414-933-	-7844		FIELD LOG		NORT	HING		., .				DRILLING METHOD
FIR CRI	M: GE	STRA HEF: S.	Gonver			LAB LOG / QC	Ray	EASTI	NG			387	470		SURFACE ELEVATION
0		1				D. Dettr	mers					2413	507		943.4 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin for Each Major Unit		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (10-inches)			<u>x1 /z</u> . <u>x1</u>						
	17	1	2		_	0.8 (94 LEAN CLAY, brown, moist, stiff	42.6)				15			10.8	
So	17	23	3			,					1.5			19.0	
				+	-	with gravel at 2-4'									
- 2		2						CL							
SS	16	4	7	Γ	940.0						1.5			15.8	
				+	+		39.4)								
e,		2		5		loose	,	GC							
- SS	16	4	9	Ĕ	_	5.5 (93	37.9)								Gravel = 45.8%
		7		1	_	SAND WITH GRAVEL, brown, moist, medium den	nse								P200 =28.5%
4		5						0.0							
- SS	19	12 17	29	-	-			52							
		16				8 (93	35.4)								
		7		T	935.0	SAND WITH SILT AND GRAVEL, light brown, moi medium dense to dense	ist,								
S - 5	20	17	44	-	_										
0)		14		10											
				Ť			S	SP-SM							
8 - 6	18	4	26	-	_										
ű		14 18			_	12/00	21 1)								
				+	≚ †	GRAVEL WITH CLAY AND SAND, brown, moist to	0		0						
7 - 2	17	12 24	54			wet, very dense									
So	17	30 54	54		930.0										
œ				+	¥ -	clayey sand layer at 14'	c	GP-GC							
- SS	5	7 50/3"	R	15		SS-8: rock pieces									
6 - 0	0	50/1"							0						
SS	0	50/1		┢	Ā	16.1 (92	27.3)								Driller peted pe receivery
						End of Boring at 16.1 it.									Auger refusal at 16'. Possible
				-	-										Dedrock.
				-	005 0										
					925.0										
				-	-										
				20											
1															
⊢						WATER & CAVF-IN OBSER									
Ţ	WA			ERE		IG DRILLING: 14 ft 超 C	AVE DE	PTH A	T COM	PLET	ON:	NMR			WET DRY
Ţ	WA	TER LE	VEL AT	СОМ	PLETIO	N: 16 ft. C.	AVE DE	PTH A	FTER (HOU	RS: I	NMR			WET DRY
	∣ WA Έ: Str	atificatio	NEL AF	I ER 4 tween	NUUH 84 soil type	KS: 12 ft.	ition betw	een in	-situ soil	layers	should	be ex	pecte	d.	

														PAGE NUMBER
	γ	DC	TT			SOIL BORI	NG	LOG	ì					
	J	ĹŊ		L		PROJECT NAME			D	ATE DRILL	ING ST	TARTED)	BORING NUMBER
						Thomas Farms Development				4/1	1/20	023		B-29 PROJECT NUMBER
GES 191 Milv	W Edge Waukee.	ngineering erton Avenu WI 53207	Inc. e			PROJECT LOCATION			D	ATE DRILL	.ING EN 1 1 / 2 (NDED		23083-10 DRILLING RIG
Pho BORIN	ne: 414- G DRILL	933-7444, ED BY	Fax: 414-933-	7844		FIELD LOG	NOR	THING		17	172			DRILLING METHOD
FIR	M: GE	STRA HIFF [.] S	Gonver			LAB LOG / QC	EAS	TING			387	7445		31/4" HSA SURFACE ELEVATION
						D. Dettmers					2412	2979		946.1 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin for Each Major Unit	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (9-inches)		<u>x1 /x</u> . <u>x1</u>						
SS - 1	13	2 2 3 5	5		945.0	0.8 (945.3) LEAN CLAY, brown, moist, stiff to very stiff2(944.1)	CL			1.0-2.0			21.7	
N		2				SANDY LEAN CLAY, brown to light brown, moist, stiff, trace gravel								
- SS	18	3 3 4	6		-					1.0			7.6	
SS - 3	16	3 4 5 5	9	5_			CL			1.0			8.5	
				+	940.0									
4		5				7 (939.1)				0.5				
SS	19	16 20	27		-	SILTY SAND WITH GRAVEL, light brown, moist, medium dense top of engineered soil at basin 4 (elev 936.0)	SM							
- 5		5 14			_	9 (937.1)								
SS	16	18 18	32			SILTY SAND, light brown, moist, medium dense to dense								P200 = 23.6%
				10		3.6 in/hr								
SS - 6	18	5 12 17 20	29	-	935.0	K	SM							
				+	-	SILTY SAN bottom of basin 4 (elev 935.0)								
SS - 7	20	12 35 24 42	59	-	⊻ _	3.6 in/hr								
		10		Ť	-		SM							
SS - 8	0	12 20 13 16	33	15	930.0									
6						17 (000 4)								
- SS	7	22 50/5"		╞	-	GRAVEL WITH SAND, light brown, wet, very dense,								
- 10					_	rock pieces (possible weathered bedrock) 18.1 (928)	GP							
SS	1	50/1"	R			End of Boring at 18.1 ft.		0_0						Driller noted auger refusal at
				+	-									20'. Possible bedrock.
				20										
1														
┣—								ΔΤΔ				1		
∇	WA		ICOUNT	ERE	DUR		DEPTH	AT CON	1PLE1	ION:	NMR	1		
Ţ	WA	TER LE	EVEL AT	СОМ	PLETI	DN: NE CAVE	DEPTH	AFTER	0 HO	JRS: I	NMR			
	WA	TER LE			HOU	RS: NMR	etwoon :	n_eitu oci	lavor	ebould	he e	vnooto	d	
	<u>د.</u> 30	aunoduo	n in ico De		son typ	os represent the approximate boundary, graduar transition b		-310 501	ayers	งอกอนเน	ne 6)	herig	м.	

															PAGE NUMBER
	γ	PC	TI			SOIL	BORII	NG L	_OG	ì					
	J	LD	11	L	1	PROJECT NAME				D	ATE DRILL	ING ST	ARTED		BORING NUMBER
GES	STRA Er	gineering	Inc.									1/20)23		PROJECT NUMBER 23083-10
191 Milv Pho	W Edge aukee, \ ne: 414-	rton Avenu NI 53207 933-7444	e Fax: 414-933-	-7844		Delafield, Wisconsin					4/1	1/20)23		DRILLING RIG
BORIN		ED BY				FIELD LOG	C. Ray	NORT	THING			387	' 504		DRILLING METHOD 31/4" HSA
CRE		HEF: S.	Gonyer			LAB LOG / QC	D. Dettmers	EAST	ING			2412	2823		SURFACE ELEVATION 948.5 ft
											igth				
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin fo Each Major Unit	r	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strer (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
-		2				TOPSOIL (24-inches), LEAN CLAY, dark	brown, moist								
· - SS	8	2 2 4	4	-	_		2 (946.5)							21	
		2		T	1	SANDY LEAN CLAY, light brown, moist, s gravel	tiff, trace								
ss - ss	13	3 4 7	7	-	945.0		4 (944.5)	CL			1.0			9.1	
		5			+	SILTY CLAY WITH GRAVEL, light brown,	moist, stiff								
SS - 3	12	6 7 8	13	5				CL-ML			1.0			10.7	
S - 4	15	9 10	20	Ţ	-		7 (941.5)								
S	_	10		+	940.0	dense	medium	GP							
- SS	5	16 25 50/5"	R	+	-	GRAVEL WITH SAND, gray and light brov very dense, rock pieces (possible weather	9 (939.5) wn, moist, red bedrock)								
SS - 6	4	35 50/3"	R					GP							
25 - 7	4	20 50/1"	R		_										
				-	935.0	End of Boring at 12.7 ft.	12.7 (935.8)								Driller noted auger refusal at 13'. Possible bedrock.
				-	-										
				15	_										
					_										
				_	020 0										
					930.0										
				20											
				20	_										
							BSER\/ATI								
$\overline{\nabla}$	WA		ICOUNT	ERE	D DURI	NG DRILLING: NE ft.		DEPTH A		1PLET	ION:	NMR			
Ţ	WA			COM	PLETIC	N: NE	CAVE	DEPTH A	FTER	0 HOL	JRS: I	NMR			WET DRY
NOT	E: Str	i ⊨R LE atificatio	r lines be	ı ⊨R (tween	soil type	ত: াশE s represent the approximate boundary; grad	ual transition be	etween in	-situ soil	layers	should	be ex	pecte	d.	

																	PAGE NUMBER
		DC	TT		1		SO	IL BC	DRIN	IG L	_OG	Ì					
	J			S F	1	PROJECT NAME						D	ATE DRILI	ING ST	ARTED		1 of 1 BORING NUMBER
						Thomas Fa	arms Developm	ent					4/1	2/20)23		B-31 PROJECT NUMBER
GES 191	TRAEr WEdge	erton Avenu	Inc. e			PROJECT LOCATIO						D,			DED		23083-10 DRILLING RIG
Pho	ne: 414- G DRILL	-933-7444, -ED BY	Fax: 414-933	-7844		Delafield, V	/VISCONSIN			NORT	HING		4/	2/20	123		Geoprobe DRILLING METHOD
FIR	M: GE	STRA					LAB LOG / QC	B. (Griffin	EAST	ING			387	799		21/4" HSA SURFACE ELEVATION
CRE		HEF: A.	vvoerpei					D. Dett	tmers		-			2413	138		939.7 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Denth (ft)	Elevation	and	Soil Description d Geological Origi Each Major Unit	n for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (10-in	ches)				<u>x, 1</u> ×. <u>x</u> ,						
-	16	3	6		_	LEAN CLAY, bro	own, moist, stiff to ver	0.8 (9 rv stiff	938.9)				25			22.2	
ŝ	10	36				- ,	, ,	,					2.5			22.5	
				+	-	trace of black lea	an clay at 2-4'										
- 2		3								CL							
SS	10	4	8	Γ									1.5-2.0			26.1	
				+	-			4.3 (9	935.4)								
e.		2		5	935.0	CLAYEY SAND	WITH GRAVEL, brov	wn to light br	rown,								
- SS	12	2	6	Ĕ													
		8			_												
4		3															
ss - i	12	7	17	+	-												
0,		22			∇					SC							
		_		1	÷ _												
S - 5	13	7 6	14	Ļ	_												
ő	10	8			930.0												
				10													
9 -		11						11 (9	928.7)								
SS	17	15 50/5"	R			SILTY SAND, lig weathered bedro	ht brown, wet, very d ock	lense, possi	ble								
				+	Ā ⁻												
5 - 7	Q	50/5"	B							SM							
ŝ	0	50/5		-	_												
8.0	5	50/5"	Б	7	_												
ŝ	5	50/5			925.0	F	End of Boring at 14.5	14.5 (9	925.2)								
				15	_	L	ind of boring at 14.5	п.									Driller noted auger refusal at
																	15'. Possible bedrock.
					_												
				_	_												
				-	_												
					_												
					920.0												
				20													
1																	
					I	WA	TER & CAVE-IN		RVATIC	DN DA	ΔTA						
$\overline{\mathbf{v}}$	WA			ERE		NG DRILLING: 8	ft.	國				IPLET	ION:	NMR			
<u>I</u> I I I I I I I I I I I I I I I I I I	WA					N: 12 ft.			JAVE DI	=PTH /	AF FER	υ ΗΟΙ	JRS:	NMR			
NOT	E: Str	atificatio	n lines be	tweer	soil type	es represent the app	proximate boundary; g	gradual tran	sition bet	ween in	-situ soi	layers	should	be ex	pecte	d.	

															PAGE NUMBER
	γ	DC	TT			SC	JIL BORI	NG I	LOG	ì					
	J			K	1	PROJECT NAME				D	ATE DRILI	_ING ST	ARTED		1 of 1 BORING NUMBER
						Thomas Farms Developr	nent				4/1	1/20)23		B-32 PROJECT NUMBER
GES 191	TRA Er W Edge	rton Avenu	Inc. e			PROJECT LOCATION				D/			DED		23083-10 DRILLING RIG
Pho BORIN	aukee, 1 ne: 414- G DRILL	933-7444, ED BY	Fax: 414-933-	7844				NOR	THING		4/	11/20)23		LC 55 DRILLING METHOD
FIR	I: GE	STRA	_			LABLOG/ OC	C. Ray	FAST	ING			388	020		31/4" HSA
CRE	W CH	HEF: S.	Gonyer			E/18 2007 Q0	D. Dettmers	Enor				2413	038		939.7 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Denth (ft)	Elevation	Soil Descriptio and Geological Orig Each Major Un	n jin for it	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_{\rm u} \text{ or } \mathbf{Q}_{\rm p})$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (8-inches)	0 7 (939)		<u> </u>						
SS - 1	15	1 2 3 3	5	-	-	LEAN CLAY, brown, moist, stiff to v	ery stiff	CI			1.5-2.5			21.1	
3 - 2	1/	1 2	5		-		3 (936.7)				1.5			20.3	
SS	14	3 2		+	-	CLAYEY SAND, light brown, moist,	loose, trace gravel							20.3	
SS - 3	17	1 1 4 5	5	5	935.0			SC							
SS - 4	12	16 40 18	58	-	-	SAND WITH SILT AND GRAVEL, III	<u>7 (932.7)</u> ght brown, moist,	_							
		12			∇	very dense	8 (931.7)	SP-SN	1						
SS - 5	17	12 16 20 21	36	-	⊻ 930.0	GRAVEL WITH SAND, light brown,	10 (929 7)	GP							
SS - 6	15	13 25 19 18	44	-	-	SILTY SAND WITH GRAVEL, light I to very dense, trace clay	brown, wet, dense	_							
SS - 7	0	50/1"	R	-	-	possible weathered bedrock 12' to E	EOB	SM							Driller noted no reovery.
80				+	-	-									
· SS	5	9 50/3"	R	15	925.0	End of Boring at 14.	14.8 (924.9) 8 ft.								
					-										Driller noted auger refusal at 16'. Possible bedrock.
				_	-										
				_ 20	920.0										
1															
		I	I			WATER & CAVE-I	IN OBSERVAT		ATA		1	1	I	1	I
Ţ	WA		COUNT	ERE	D DUR	ING DRILLING: 8 ft.	CAVE	DEPTH		1PLET	ION:	NMR			
Ţ	WA	TER LE	VEL AT	CON	IPLETI	ON: 9 ft.	CAVE	DEPTH	AFTER	0 HOL	JRS:	NMR			
<u>↓</u> NOT	WA E: Str	atificatio	VEL AFT	IER 4 tweer	48 HOL n soil typ	JRS: 9 ft. bes represent the approximate boundary	; gradual transition l	between ir	n-situ soil	layers	should	be ex	pecte	d.	

								_							PAGE NUMBER
(<u> </u>	PC	TE			SOIL	BORIN	IG L	_OG	Ì					1 of 1
			11	U	L	PROJECT NAME Thomas Farms Development				DA	ATE DRILI	LING ST	arted)23		BORING NUMBER B-33
GES 191 V	TRA En W Edge	ngineering	Inc. e							D			DED		23083-10 DRILLING RIG
Phor	aukee, v ne: 414- G DRILL	933-7444, F ED BY	Fax: 414-933-1	7844				NORT	HING		4/	12/20	123		Geoprobe DRILLING METHOD
FIRM CRE	/I: GE W C⊦	STRA HEF: A. '	Woerpel			LAB LOG / QC	B. Griffin	EAST	ING			388	433		21/4" HSA SURFACE ELEVATION
							Delliners					2412	.595		924.1 1
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin for Each Major Unit		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
		4				TOPSOIL (6-inches)	0.5 (923.6)		<u>, 1, 1</u>						
SS - 1	10	4 5	9	-	_	LEAN CLAY WITH GRAVEL, brown, moist, organics (possible fill)	very stiff,	CI			2.0			21.8	
		6			¥ _		2.2 (921.9)								
2		3				CLAYEY SAND, light brown, loose to mediu trace gravel	um dense,								
- SS	13	5	8	-	Ā	J									
-		2		+	920.0										
- 3		2		5											
SS	13	4 6	7												
				+	-			SC							
S - 4	8	34	16	-	_										$C_{revel} = 14.0\%$
S	-	12 9	_												Sand = 42.9% P200 =42.2%
		4		Ť	_										
SS - 5	13	11	22	-	915.0										
		11		10											
9		5				SILT, blueish gray with brown mottling, dry	10.4 (913.7) to moist,								
- SS	19	14	28	-	_	medium dense to very dense								7.8	
		21		+	-										
2 -		6													
SS	16	11 12	23					ML						9.8	
-				+	910.0										
S - 8	17	9 19	50	15											
S		27					16 (908.1)								
6-S	6	50/0"	R		_	End of Boring at 16.0 ft.									
S.				+	-										Driller noted auger refusal at
				-	_										17. Possible bedrock.
					905.0										
					500.0										
				20	_										
∇	\ \ / ^ '				יםו וח ר			N DA			ION-				WET 🗖
Ţ	WA	TER LE	VEL AT (PLETIC	N: 3.5 ft.		EPTH /	AFTER		JRS:	NMR			
	WA	TER LE		ER 2	24 HOU	RS: 2 ft.	al transition bet	woon in	_eitu oo ⁱⁱ	lavora	should	be er	necto	d	

																PAGE NUMBER
	\mathbf{T}	P C	TI				SOI	L BORIN	IG I	LOG	Ì					1 of 1
	J	L'D		U	1			nt			D			ARTED		BORING NUMBER B-34
GE 191	STRA Er W Edge	ngineering erton Avenu	Inc. e			PROJECT LOCATI					D.	ATE DRILI	ING EN	IDED		PROJECT NUMBER 23083-10
Milv Pho BORIN	vaukee, ne: 414- G DRILL	WI 53207 -933-7444, _ED BY	Fax: 414-933-	7844		Delafield,	Wisconsin FIELD LOG		NOR	THING		4/*	2/20)23		DRILLING METHOD
FIR	M: GE	STRA	Woernel				LAB LOG / QC	B. Griffin	EAST	TING			388	315		21/4" HSA SURFACE ELEVATION
								D. Dettmers					2412	2460		929.6 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	and	Soil Description d Geological Origin Each Major Unit	for	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
_		3				TOPSOIL (5-inc	ches)	0.4 (929.2)								
SS - 1	11	3 4 6	7		-	LEAN CLAY, bro	own, moist, very stiff		CL			3.0			21.7	
5		3			•	CLAYEY SAND,	, light brown, moist to w	2.5 (927.1) /et, medium								
· SS	12	4 6 5	10		-¥ -	dense, trace to v	with gravel									P200 = 21.0%
e.		5		5	925.0											
SS	0	10 7	17													Driller noted no recovery.
4		4							sc							
- SS	0	56	11	F	-											Driller noted no recovery. Flight auger sample.
		0		+	<u>Ā</u> -											· ···
o - 5	15	6 11	27		⊻ _											
ŝ		16 38		10	920.0											
SS - 6	10	27 50/4"	R	Τ		GRAVEL WITH	SAND dark brown we	10.5 (919.1)	GP							
					-		End of Boring at 10.8 ft	<u>10.8 (918.8)</u>								Driller noted auger refusal at 11'. Possible bedrock.
				- 15 -	- 915.0 											
				- - 20	 910.0											
⊢						WA	TER & CAVE-IN	OBSERVATI		I ATA						
Ţ	WA			EREI	D DUR	NG DRILLING: 9) ft.	CAVE D	EPTH	AT CON	1PLET	ION:	NMR			
I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	WA WA	TER LE	VEL AT	COM		DN: 8 ft. RS: 3 ft.			EPTH	AFTER	0 HOI	JRS:	NMR			
NOT	E: Str	atificatio	n lines bet	ween	soil typ	es represent the app	proximate boundary; gr	adual transition be	tween ir	n-situ soi	llayers	should	be ex	pecte	d.	

															PAGE NUMBER
		DC	TT			SOI	L BORI	NG L	_OG	ì					
	T			K A		PROJECT NAME				DA		ING ST	ARTED		1 of 1 BORING NUMBER
			-			Thomas Farms Developme	nt				4/*	1/20	23	-	B-35
GE: 191	STRA Er W Edge	ngineering erton Avenu	Inc. e			PROJECT LOCATION				DA		ING EN	DED		23083-10
Milv Pho BORIN	vaukee, \ one: 414-	WI 53207 933-7444, ED BX	Fax: 414-933-	7844		Delafield, Wisconsin		NOPT	HING		4/*	1/20)23		LC 55
FIR	M: GE	STRA					C. Ray					387	880		31/4" HSA
CRE	EW CH	HEF: S.	Gonyer			LAB LOG / QC	D. Dettmers	EAST	ING			2412	395		SURFACE ELEVATION 937.8 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin Each Major Unit	for	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (9-inches)	0.9 (027)		<u>71 1</u> 7						
SS - 1	15	1 2 2 2	4	-	-	LEAN CLAY, brown, moist, stiff to very	0.8 (937) stiff				2.0			21.2	
SS - 2	1 935.0 12 2 5 4				935.0 _	sanoy lean ciay 2-4	4 (033.8)	CL			1.0				
SS - 3	19	2 3 3 5	6	5_		CLAYEY SAND WITH GRAVEL, light b loose	+(<u>353.6)</u> rown, moist,	sc							
SS - 4	5 - 7 - 16 18 16 930.0		- 930.0	SAND WITH SILT AND GRAVEL, light dense to very dense	7 (930.8) brown, moist,										
5				+	-		8 5 (929 3)	5P-5M							
- SS	4	26 50/6"	R		•	GRAVEL WITH SAND, light brown, mo			6 JU						
9 - SS	3	50/5"	R	10	¥	dense, possible weathered bedrock									
SS - 7	6	7 50/5"	R		- - 925.0	SS-7: trace to with clay	12.9 (924.9)	GP							
				-	-	End of Boring at 12.9 ft.									Driller noted auger refusal at 13'. Possible bedrock.
				_											
				_	- 920.0 -										
				20											
⊢						WATER & CAVE-IN	OBSFRVAT		TA					1	
Ţ	WA		COUNT	ERE	D DUR	NG DRILLING: 10 ft.	CAVE	DEPTH A		IPLET	ION:	NMR			
Ţ	WA	TER LE	VEL AT	СОМ	PLETIC	DN: 10 ft.	CAVE	DEPTH A	FTER	0 HOL	JRS:	NMR			WET DRY
	WA	TER LE	VEL AFT	ER 4	8 HOU	RS: 9 ft. es represent the approximate boundary: gra	dual transition b	etween in	-situ soi	avers	should	be ex	pecte	d.	

																PAGE NUMBER
(21	RC	TE			SOI	LΒ	ORIN	IG L	.OG	Ì					1 of 1
					1	PROJECT NAME Thomas Farms Developmer	nt				D	ATE DRILL	ING ST	ARTED		BORING NUMBER B-36
GES 191 Milus	TRA Er	ngineering erton Avenu	Inc. e			PROJECT LOCATION					D					23083-10 DRILLING RIG
Pho BORIN	ne: 414- G DRILL	933-7444, ED BY	Fax: 414-933-	7844		FIELD LOG			NORT	HING		4/	2/20	25		Geoprobe DRILLING METHOD
FIRI CRE	A: GE	STRA HEF: D.	Harvev			LAB LOG / QC		C. Dietz	EAST	NG			389	672		21/4" HSA SURFACE ELEVATION
_			1				D. D	ettmers				1	2413	827		900.7 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin f Each Major Unit	or		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_u \text{ or } \mathbf{Q}_p)$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
		0			900.0	TOPSOIL (9-inches)		2 (200 0)		<u>., 1</u> , <u>., 1</u>						
SS - 1	24	0 1 3 3	4	-		LEAN CLAY, brown, moist, stiff to very		ace sand				1.5			25.9	Staked location not accessible. B-36 offset 100' S and 135' E. GESTRA obtained coordinates and
SS - 2	11	0 2 1 1	3	-	_				CL			1.5-2.5			26.1	elevations.
				+	₹ +	CLAYEY SILTY SAND, light brown, very	4 / moist	to wet,								
SS - 3	11	4 6 5 4	11	5	 895.0 _	loose to dense										
SS - 4	20	3 4 5 4	9	_	_				SC-SM							
SS - 5	7	11 12 22 13	34	10	_		1() (890.7)								
SS - 6	14	16 50 50/4"	R	-	890.0	SILTY SAND, light brown, moist, very d	 Inse									Driller noted possible cobbles or boulders at 11'.
SS - 7	17	20 32 50/5"	R	-	_				SM							
SS - 8	16	36 56 50/4"	R	15	885.0	End of Device and C. (A	15.4	l (885.3)								
				- - 20	- - - - 880.0	End of Boring at 15.4 ft.										Driller noted auger refusal at 15.5'. Possible bedrock.
						WATER & CAVE-IN (OBSE	RVATIO	ON DA	TA						
	WA					G DRILLING: 4 ft.			EPTH /		IPLET	ION:				
Ť	WA	TER LE	EVEL AFT	ER ().5 HOU	RS: 4 ft.		UNVE D					NIVII X			DRY 🗖
NOT	E: Str	atificatio	n lines bet	ween	soil types	represent the approximate boundary; gra	idual tr	ansition bet	ween in	-situ soil	layers	should	be ex	pecte	d.	

																PAGE NUMBER
	γ_1		TT			SOI	L BO	RIN	IG L	_OG	ì					
	Т	17		K /	4	PROJECT NAME					D	ATE DRILI	ING ST	ARTED		1 of 1 BORING NUMBER
						Thomas Farms Developme	nt					4/1	2/20)23		B-37 PROJECT NUMBER
GES 191	TRAE r W Edge	igineering rton Avenue	Inc. e			PROJECT LOCATION					D	ATE DRILL		IDED		23083-10
Milv Pho BORIN	aukee, \ ne: 414-	NI 53207 933-7444, F ED BY	Fax: 414-933-	7844					NORI	HING		4/1	2/20)23		Geoprobe
FIR	M: GE	STRA					C. D	Dietz	FACT				389	9770		21/4" HSA
CRE	W CH	HEF: D.	Harvey				D. Dettn	ners	EAST	ING			2413	3886		899.3 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Donth (#)	eepun (₁ւ) Elevation	Soil Description and Geological Origin Each Major Unit	for		USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (7.5-inches)	0.6.(90	10 7)		<u>x1 / .</u> . <u>x</u>						
SS - 1	19	2 2 3 3	5	_	-	LEAN CLAY WITH SAND, brown, mois	t, stiff	90.7)	CL			1.25			17.3	
SS - 2	17	2 3 5 9	8	-	-	CLAYEY SAND, light brown, very moist medium dense, trace gravel	3 (89 t, loose to	96.3)							11	Gravel = 14.7% Sand = 40.8%
SS - 3	1	5 7 7 6	14	5	895.0 		6 (80	03.31	sc							Driller noted rock in SS-3.
SS - 4	20	4 8 9 10	17	-	¥ _	SILTY CLAYEY SAND, light brown, mo dense to very dense, trace gravel	<u>0 (os</u> ist, medium	<u>, , , , , , , , , , , , , , , , , , , </u>								bouider.
SS - 5	23	10 18 17 23	35	10	890. 0											
SS - 6	24	13 21 23 23	44	-	-				SC-SM							
SS - 7	24	28 36 34 33	70	-	_ 											
SS - 8	19	19 32 42 39	74	<u>15</u>	885.0	wet at 14' moist at 15'										
6 - SS	14	31 41 50/2"	R		_	wet at 16'	17.2 (88	32.1)								
				_ _ 20	- 880.0	End of Boring at 17.2 ft.										Driller noted auger refusal at 17.5'. Possible bedrock.
1																
╞								/A TIC						<u> </u>		
	۱۸/ ۸			FRF	יםי וח ח						וףו בי					WET 🗖
Ť	WA		VEL AT		IPLETIC	N: 7 ft.	<u>mea</u> C/		EPTH A	AFTER		JRS: 1	NMR			
Ţ	WA	TER LE	VEL AFT	ER	1 HOUF	2S: 5.5 ft.										ן אט עיי
NOT	E: Str	atificatio	n lines bet	weer	ו soil type	es represent the approximate boundary; gra	adual transi	ition bet	ween in	-situ soil	layers	should	be ex	pecte	d.	

														PAGE NUMBER
		DC	TT			SOIL BOR	ING	LOG	Ì					
	J	1D		K F	1	PROJECT NAME			D	ATE DRIL	LING ST	ARTED		BORING NUMBER
						Thomas Farms Development				4/*	12/20)23		B-38 PROJECT NUMBER
191 Milw	W Edge aukee, \	rton Avenue NI 53207	inc. e			Delafield Wisconsin			D	ATE DRILI	LING EN	DED		23083-10 DRILLING RIG
Pho BORIN	ne: 414- G DRILL	933-7444, I ED BY	-ax: 414-933-	-7844		FIELD LOG	NOF	RTHING			380	0304		DIEditCH DS0 ATV
FIRI CRE	1: GE W CH	stra Hef: A.	Woerpel			LAB LOG / QC	EAS	TING			2413	3909		SURFACE ELEVATION 910 ft
						B. Bokinore								
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin for Each Major Unit	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength (Q _u or Q _p) (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
		_				TOPSOIL (measurement not recorded)),	<u></u>						
SS - 1	8	2 3 4	7	-	-	LEAN CLAY, red and brown with black mottling, moist, stiff				1.0			24.3	Driller noted possible
0,		35				2 (908))							boulder.
SS - 2	12	3 3 4 6	7	-	-	CLAYEY SAND, light brown, moist to very moist, loose to medium dense								
SS - 3	13	3 5 11 8	16	5	905 <u>.0</u>	sandy gravel layer at 4.5'	SC							
SS - 4	14	3 4 10 8	14	_	-	8 (902)							
10		4				SANDY LEAN CLAY, light brown, moist, very stiff								
SS -	10	31 15 11	46	10	900.0	gravel layer at 9'	CL			2.5			7.4	
9 - S	16	6 9	22	-	_					2.0			5.7	
05		13				12 (898	,							
				T	_	SANDY LEAN CLAY, gray, moist, stiff								
SS - 7	15	3 3 5	8	-	-	14 (896	CL			1.0			10.1	
SS - 8	12	4 8 7	15	15	895 <u>.0</u>	CLAYEY/SILTY SAND, gray, very moist to moist, medium dense to very dense, trace to with gravel	sc-s	м						
6 - SS	10	15 30	R			17.0 /00.2 0								
		50/2				End of Boring at 17.2 ft.	,							
				-	-									
				20	890 <u>.0</u>									Driller noted auger refusal at 19'. Possible bedrock.
L														
	\M/ A			FREI	יםו וח נ		I ION D				NMP			WET 🗖
Ť	WA	TER LE	VEL AT	COM	PLETIC	DN: NE CAVE	DEPTH	AFTER		JRS:	NMR			
	WA	TER LE				S: NMR	hotwoor	n oitu oc'		chould		(noct-	d	
IUVI	E. SIR	auncatio	n intes de	ween	SOII (YP	es represent the approximate boundary; gradual transition	nermeeu I	n-situ sol	ı iayers	snould	ne ex	wecte	u.	

															PAGE NUMBER
	2	P C	TI			SOI	L BORIN	GL	_OG	Ì					1 of 1
		L'N		L		PROJECT NAME	nt			D/	ATE DRILI	LING ST	ARTED		BORING NUMBER
GE 191	STRA Er W Edge	ngineering erton Avenue	Inc. e			PROJECT LOCATION				D	ATE DRILI		IDED		23083-10
Milv Pho BORIN	ne: 414-	WI 53207 933-7444, I ED BY	Fax: 414-933-	7844		Delafield, Wisconsin		NOR	HING		4/1	12/20)23		Geoprobe
FIR	M: GE	STRA					B. Griffin	EAST				389	9169		21/4" HSA
CRE	EW CH	HEF: A.	Woerpel				D. Dettmers	EAST	ING			2413	8830		911.7 ft
Number and Type	Recovery (in)	Blow Counts	N - Value	Depth (ft)	Elevation	Soil Description and Geological Origin f Each Major Unit	or	USCS Classification	Graphic	Well Diagram	Unconfined Comp. Strength $(\mathbf{Q}_{u} \text{ or } \mathbf{Q}_{p})$ (tsf)	Liquid Limit	Plasticity Index	Moisture Content (%)	Comments
						TOPSOIL (5-inches)			<u>, 1 1 x</u> . <u>, 1</u>						
SS - 1	12	2 3 4 4	7	-	_ 910.0 ¥	LEAN CLAY, brown, moist, very stiff, tra	0.4 (911.3)	CL			2.0			30.3	
SS - 2	12	2 6 7 6	13	_	_	mottling, moist, stiff, trace gravel	urgray	CL			1.5			16.5	
SS - 3	18	3 9 8 16	17	5		CLAYEY SAND, light brown, moist, mec trace gravel gravelly at 5'	4.8 (906.9) lium dense,								
SS - 4	24	2 3 3 5	6	_	905.0 _		8 (903.7)	SC							
SS - 5	18	3 4 6 8	10	10	_	SANDY LEAN CLAY, light brown, moist stiff	to very moist,	CL			1.0			9.9	
SS - 6	24	7 8 12 11	20	-	_ 900.0		12 (899.7)				1.0			9	
2 - 2S	22	2 3 6 13	9	-	⊻ _ ⊻ _	CLAYEY SAND, gray, moist, loose to m trace gravel	edium dense,	SC							
SS - 8	14	3 11 11 25	22	<u>15</u>		SANDY SILT, gray, moist, very dense, t	15 (896.7) race gravel							9.5	
85 - 9	13	21 47 50/1"	R			End of Daving at 47.4 ft	17.1 (894.6)	ML						7	
				- 20	_	End of Boring at 17.1 ft.									Driller noted auger refusal at 17.5'. Possible bedrock.
						WATER & CAVE-IN	DBSERVATIC	N DA	TA		·	·		·	·
Ţ	WA	TER EN	COUNT	ERE) DURI	NG DRILLING: 13 ft.	CAVE DE	PTH /	AT COM	IPLET	ION:	NMR			
I ↓	WA					DN: 14 ft.	CAVE DE	EPTH /	AFTER	0 HOL	JRS:	NMR			
NOT	E: Str	atificatio	n lines bet	tween	soil type	rso. ∠ n. es represent the approximate boundary; gra	 dual transition betv	ween in	-situ soil	layers	should	be ex	pecte	d.	

Division	of Industry	Services	in accordance v	vith SPS 38	82.365 and	d 385, V	Nis. Adm. Co	ode						
Attach	complete s	site plan on paper	not less than 8 1/2 x 11 inche	es in size. F	Plan must		County Waukesha							
include percen	e, but not lii t slope, sc	mited to: vertical a ale or dimensions	and horizontal reference point , north arrow, and BM reference	(BM), dired	ction and rest road.		Parcel I.D. DELT080999	5						
		Please	print all information.				Reviewed	by		Date				
Perso	nal informati	on you provide may	 be used for secondary purposes (F 	Privacy Law,	s. 15.04 (1)	(m)).	J. Metzir	nger, E.I.	Т	04/24/2023				
Property	Owner				Property L	ocation	1							
THE RC	DBERT G	AND ANN B	THOMAS REVOCABLE	TRUST	Govt. Lot	S	E 1/4 NE 1.	/4 s 23	т 7 м	NR18 E(or)W				
Property 0	Owner's Ma 29352 C	ailing Address DAKTON RD			Lot #	Block #	[#] Subd. Nan	ne or CSM#						
City		State Zip	Code Phone Number		City		Village 🗙	Fown	Nearest	t Road				
PEWA	UKEE	W 530	072 _()		DELAFI	ELD			THOM	AS ROAD				
Drainage	e area		_ sq. ft. ∏acres		Hydrau	ulic App	plication Test	: Method:						
Test Site	Suitable	for (check all th	at apply)				X	Morpholo	ogical Eva	aluation				
	ation		ention trench	n(es)				Double-F	Ring Infiltr	ometer				
Rain garden Grassed swale Reuse Other (specify) Other (specify)														
Infiltration trench SDS (> 15' wide) Other														
B-1 Obs. # Boring Pit Ground surface elev. 899.7 ft. Depth to limiting factor -48 in.														
Horizon	Horizon Depth Dominant Color Redox Description Texture Structure Consistence Boundary % Rock Inches/Hr													
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz	z. Sh.		,	Frag.					
А	10	10YR 3/3	-	SIL	2, VF,	SBK	MFR	-	< 5	0.13				
В	36	10YR 3/4	-	CL	2, VF,	SBK	MFI	-	< 10	0.03				
С	45	10YR 6/4	c, 2, D, 10YR 7/1	GRSL	0, I	М	MFR	_	26.9	0.50				
С	96	10YR 6/6	-	GRSCL	. 0, S	G	MVFR	-	15 - 30	0.11				
С	150	10YR 6/4	-	XGRLS	6 0, I	м	MFR	-	50 - 65	1.63				
B-2 0	bs.#	Boring	906 9				-60	า						
	L	Pit Grou	nd surface elev	ft.	Depth to I	limiting	factor	<u> </u>		Hydrualic App. Rate				
Horizon	Depth	Dominant Color	Redox Description	Texture	Struc	ture	Consistence	Boundary	% Rock	Inches/Hr				
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz	z. Sh.			Frag.					
A	7	10YR 3/3	-	SIL	2, VF,	SBK	MFR	-	< 5	0.13				
BC	24	10YR 3/4	-	C	2, VF,	SBK	MVFI	-	<10	0.07				
C	48	10YR 6/6	-	GRSL	0, 1	M	MFR	-	15 - 20	0.50				
C	60	10YR 6/4	-	GRSIL	0, 1	M	MFR	-	15 - 30	0.13				
C	66	10YR 8/1	-	VGRS	0, 8	SG	MLO	_	35 - 55	3.60				
C	102	10YR 6/4	-	GRSIL	. 0, 1	M	MFR	-	15 - 30	0.13				
CST/PSS Douglas	8 Name (Pl 6 Dettmer	ease Print) s, PE		Signature	Origlas be	ittmus			CST/I 350	PSS Number 60-6				
Address					Da	te Evalu	uation Conduc	ted	Tele	phone Number				
GESTR	A Engineer	ing, Inc 191 W.	Edgerton Avenue, Milwaukee	, WI 53207		04/2	24/2023		41	4-933-7444				

SBD-10793 (R03/13)

Page 1 of 5

Wis. Dept. of Safety and Professional Services	SOIL EVALUATION - STORM		
Division of Industry Services	in accordance with CDC 202 265 and 285 Wie	A aluan	0

B-3 Obs. # Boring Pit Boring Ground surface elev. 915.6 ft. Depth to limiting factor -120 In. In. Hydra Horizon Depth Dominant Color Redox Description Qu. Sz. Cont. Color Texture Structure Gr. Sz. Sh. Consistence Boundary % Rock Frag. A 6 10YR 3/3 - SIL 2, VF, SBK MFR - < 5 B 24 10YR 3/6 - SC 2, VF, SBK MFI - 5 - 14 Cr 120 10YR 8/2 - XGRS 0, SG MLO - 60 - 80	ulic App. Rate Inches/Hr 0.13 0.04 3.60
HorizonDepth in.Dominant Color MunsellRedox Description Qu. Sz. Cont. ColorTexture Gr. Sz. Sh.Consistence Gr. Sz. Sh.Boundary Frag.% Rock Frag.A610YR 3/3-SIL2, VF, SBKMFR-< 5	0.13 0.04 3.60
Instant Depart Depart <thdepart< th=""> <thdepart< th=""> <thdepart< t<="" td=""><td>0.13 0.04 3.60</td></thdepart<></thdepart<></thdepart<>	0.13 0.04 3.60
A 6 10YR 3/3 - SIL 2, VF, SBK MFR - < 5 B 24 10YR 3/6 - SC 2, VF, SBK MFI - 5 - 14 Cr 120 10YR 8/2 - XGRS 0, SG MLO - 60 - 80	0.13 0.04 3.60
B 24 10YR 3/6 - SC 2, VF, SBK MFI - 5 - 14 Cr 120 10YR 8/2 - XGRS 0, SG MLO - 60 - 80 (0.04 3.60
Cr 120 10YR 8/2 - XGRS 0, SG MLO - 60 - 80 4 Image: Cr 60 - 80 Image: Cr	3.60
B-4 Obs. # Boring 919.8 ft. Depth to limiting factor -114 in.	
Hydrai	Ilic App. Rate
Horizon Depth Dominant Color Redox Description lexture Structure Consistence Boundary % Rock	Inches/Hr
A 10 10YR 3/3 - SIL 2, VF, SBK MFR - < 5	0.13
B 36 10YR 3/4 - C 2, VF, SBK MFI - < 10	0.07
C 48 10YR 3/4 - VGRC 0, M MFI - 35 - 45	0.07
C 72 10YR 7/2 - XGRSL 0, SG 0, SG - 70 - 80	0.50
C 114 10YR 6/4 - VGRSIL 0, M MFR - 50 - 59	0.13
B-8 Obs. # Ground surface elev. 918.7 ft. Depth to limiting factor -78 in.	
Hydrau Hydrau Horizon Donth Dominant Color Bodox Description Taxture Consistence Boundary V Desk	nc App. Rate
in. Munsell Qu. Sz. Cont. Color Gr. Sz. Sh. Frag	ncnes/Hr
A 10 10YR 3/1 - SIL 2, VF, SBK MFR - < 5	0.13
B 66 10YR 3/6 - SCL 2, VF, SBK MFI - < 5	0.11
C 78 10YR 5/4 - GRSICL 0, M MFI - 20 - 30	0.04

Property C		BERT G AND ANN B THOMAS RE	VOCABLE TRU	arcel ID # _	DELT0809995			Page _	35
B-13 O)bs. #	X Boring ☐ Pit Grou	921.7 nd surface elev.	ft. I	Depth to limiting	factor5	4		
Horizon	Donth	 Dominant Color	Roday Description	Toxturo	Structure	Consistence	Boundary	0/ Pook	Hydraulic App. Rate
Horizon	in.	Munsell	Qu. Sz. Cont. Color	Texture	Gr. Sz. Sh.	Consistence	Боиндагу	Frag.	
A	10	10YR 3/3	-	SIL	2, VF, SBK	MFR		< 5	0.13
В	24	10YR 3/6	-	С	2, VF, SBK	MVFI		< 10	0.07
С	54	10YR 5/8	-	SCL	0, M	MVFR		5 - 14	0.11
B-14 0)bs. #	Boring	925.2	I	I	0	0	1	I
	l	Pit Grou	nd surface elev.	ft.	Depth to limiting	g factor	in.		Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
А	10	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	24	10YR 3/6	-	С	2, VF, SBK	MVFI	-	< 10	0.07
С	72	10YR 5/4	-	VGRLS	0, SG	MLO	-	35 - 45	<mark>1.63</mark>
С	90	7.5YR 4/3	-	VGRSCL	0, M	MVFI	-	40 - 50	0.11
B-21 0	bs. #	X Boring	Ind surface elev.	ft.	Depth to limiting	factor5	4		
	Darth		Daday Description	Taxture	Charles to ma	Consistent	Daurden	0/ D!	Hydraulic App. Rate
Horizon	Depth in	Dominant Color	Reaox Description	lexture	Gr Sz Sh	Consistence	Boundary	Frag	Incnes/Hr
A	8	10YR 2/1	-	L	2, VF. SBK	MFR	_	< 5	0.24
C	54	10YR 7/2 and 10YR 4/1	_	GR/CB	0, SG	MLO	_	> 90	3.60
					-,				

Property C		BERT G AND ANN B THOMAS RE	VOCABLE TRL	arcel ID # _	DELT0809995			Page _	of
B-22 O	bs. #	X Boring	nd surface elev.	ft. I	Depth to limiting	factor -9	6 _{in.}		
	Denth			T		0		0/ D!-	Hydraulic App. Rate
Horizon	in.	Munsell	Qu. Sz. Cont. Color	Texture	Gr. Sz. Sh.	Consistence	Boundary	Fraq.	Inches/Hr
Α	9	10YR 2/2	-	L	2, VF, SBK	MFR	-	< 5	0.24
В	60	10YR 3/6	-	CL	2, VF, SBK	MFI	-	< 5	0.03
С	90	10YR 4/6	_	GRSL	0, M	MFI	-	32.9	0.50
С	97	10YR 6/6	-	XGRS	0, SG	MLO	-	70 - 85	3.60
	<u> </u>	N Boring	010.2	1	1		า	1	I
R- 8	US. #	Pit Grou	ind surface elev.	ft.	Depth to limiting	g factor	00in.		Hudraulia App. Bata
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
Α	12	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	48	10YR 3/4	-	С	2, VF, SBK	MFI	-	< 10	0.03
С	72	10YR 5/6	-	GRSL	0, M	MVFR	-	23.7	0.50
С	102	10YR 5/6	_	SICL	0, M	MFI	-	< 10	0.04
С	108	10YR 5/6	-	GRSICL	0, M	MFI	-	15 - 20	0.04
	bs #	X Boring	920.8	1			14	1	I
B-10	05. #	Pit Grou	and surface elev.	ft.	Depth to limiting	factor	in.		Hudraulia Ann. Pata
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
A	9	10YR 3/3	-	SICL	2, VF, SBK	MFI	-	< 5	0.04
В	36	10YR 3/4	-	CL	2, VF, SBK	MFI	-	< 10	0.03
С	60	10YR 5/6	-	GRSL	0, M	MFR	-	15 - 20	0.50
С	72	10YR 6/6	-	XGRLS	0, SG	MLO	-	70 - 80	1.63
С	96	10YR 5/8	-	VGRLS	0, SG	MLO	-	35 - 50	1.63
С	144	10YR 6/6	_	XGRLS	0, SG	MLO	-	60 - 80	1.63
L	1			1		I		1	1

Property Owner THE ROBERT G AND ANN B THOMAS REVOCABLE Page Parcel ID # DELT0809995 Page Page 5								5 _{of} 5
s.#	Boring	917 8			-6	6		
L	Pit Grour	nd surface elev. <u>017.0</u> f	ft. (Depth to limiting	factor	<u> </u>		Hydraulic App. Rate
Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
10	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
24	10YR 3/4	-	С	2, VF, SBK	MFI	-	< 10	0.07
48	10YR 5/6	-	SCL	0, M	MVFR	-	10 - 14	0.11
66	10YR 5/8	-	SICL	0, M	MFI	-	< 10	0.04
s.# [Pit Grou	nd surface elev. 917.4	ft.	Depth to limiting	g factor	00in.		Liveraulia Area Data
Denth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	nydraulic App. Rate
in.	Munsell	Qu. Sz. Cont. Color	Toxtaro	Gr. Sz. Sh.		Doundary	Frag.	monee,rm
10.5	10YR 2/1	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
36	10YR 3.5/6	-	CL	2, VF, SBK	MFI	-	< 10	0.03
48	10YR 7/6	-	XGRLS	0, SG	MLO	-	60 - 80	1.63
60	10YR 5/8	-	XGRS	0, SG	MLO	-	60 - 80	3.60
	ner	Image: Market in the second secon	Image: Market and the second seco	Image:	Parcel ID # DELL FOODSESS s. # Boring Pit Ground surface elev. 917.8 ft. Depth to limiting Depth Dominant Color Redox Description Qu. Sz. Cont. Color Texture Structure Gr. Sz. Sh. 10 10YR 3/3 - SIL 2, VF, SBK 24 10YR 3/4 - C 2, VF, SBK 48 10YR 5/6 - SCL 0, M 66 10YR 5/8 - SICL 0, M 66 10YR 5/8 - SICL 0, M s. # Boring Pit Ground surface elev. 917.4 ft. Depth to limiting Depth Dominant Color Nunsell Redox Description Qu. Sz. Cont. Color Texture Structure Gr. Sz. Sh. 10.5 10YR 2/1 - SIL 2, VF, SBK 36 10YR 3.5/6 - CL 2, VF, SBK 48 10YR 7/6 - XGRLS 0, SG 60 10YR 5/8 - XGRS 0, SG 60 10YR 5/8 - XGRS 0, SG 60 10YR 5/8 -	mer	mer Boring Pit Ground surface elev. 917.8 ft. ft. Depth to limiting factor -66 in. Depth Dominant Color Munsell Redox Description Qu. Sz. Cont. Color Texture Structure Gr. Sz. Sh. Consistence Boundary 10 10YR 3/3 - SIL 2, VF, SBK MFR - 24 10YR 3/4 - C 2, VF, SBK MFI - 48 10YR 5/6 - SICL 0, M MVFR - 66 10YR 5/8 - SICL 0, M MFI - s. # Boring Pit Ground surface elev. 917.4 ft. Depth to limiting factor 60	mer

Test Results and/or Summary Comments

*All borings terminated on possible bedrock refusal.

**Depth to limiting layer determined based on shallowest groundwater level observed during/after drilling, or depth to top of bedrock refusal.

B-9: Topsoil thickness assumed (not measured)

The Dept. of Safety and Professional is an equal opportunity service provider and employer. If you need assistance to access services or need material in an alternate format, contact the department at 608-266-3151 or TTY through Relay.

Division of Industry Services in accordance with SPS 382.365 and 385, Wis. Adm. Code									
Attach	complete s	site plan on paper	not less than 8 1/2 x 11 inche	es in size. P	lan must	County Waukesha			
include percen	e, but not lii it slope, sci	mited to: vertical a ale or dimensions	and horizontal reference point , north arrow, and BM referen	(BM), direc	tion and est road.	Parcel I.D.	96		
		Please	print all information			Reviewed	by		Date
Perso	nal informati	on you provide may	be used for secondary purposes (F	⊃rivacy Law,	s. 15.04 (1) (m)).	J. Metziı	nger, E.I.	Т.	04/24/2023
Property	Owner			1	Property Locati	on		_	
KELL	EN H	WESSON			Govt. Lot	SW 1/4 NE 1	/4 s 23	т 7 т	N R 18 Ē(or)₩
11663	N BOB	OLINK LN					THE OF CONI#		
City		State Zip	Code Phone Number		City 2	Village	Town	Neares	t Road
MEQU	ON	WI 530	<u> </u>		DELAFIELD			CROO	KED CREEK ROAD
Drainage	e area		sq. ftacres		Hydraulic A	pplication Tes	t Method:		
Test Site Suitable for (check all that apply)						X	Morpholo	ogical Eva	aluation
Irrigation Isoretention trench Irench(es)				n(es)			Double-F	Ring Infiltr	ometer
📋 Rair	n garden	Grasse	•						
🗌 Infilt	ration trer	nch 🗌 SDS (>	> 15' wide) □ Other						<u> </u>
	bs #	K Boring	017 7			79	2		
D-0] °	[Pit Grou	nd surface elev. 917.7	ft. I	Depth to limitin	g factor	D in.		Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color	011	Gr. Sz. Sh.			Frag.	0.40
A	10	10YR 3/3	-	SIL	2, VF, SBr		-	< 5	0.13
C	60	10YR 6/6	-	GRSCL	0, M	MFR	-	15 - 25	0.11
C	83	10YR 6/6	-	XGRLS	0, SG	MLO	-	60 - 75	1.63
B-6 °	bs. #	Boring	912.4			-16	62		
	L	_ Pit Grou	nd surface elev1	nt.	Depth to limitin	g factor	in.		Hydrualic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
A	11	10YR 3/2	-	SIL	2. VF. SB	MFI	_	< 5	0.13
В	36	10YR 4/6	_	GRSL	0, M	MFR	-	30.6	0.50
С	108*	10YR 6/6	c, 1, P, 10YR 6/1	VGRSCL	0, M	MFI	_	35 - 45	0.11
С	162	10YR 5/8	-	XGRSCL	0, M	MVFI	-	60 - 75	0.11
	*With 10	YR 3/4 sand layer at 3	72 inches						
						1			
CST/PSS	S Name (Pl	lease Print)		I Signature	<u> </u>		I	L CST/	PSS Number
Dougla	as Dettme	rs, PE			Augles Dettrus			350	60-6
Address					Date Ev	aluation Conduc	cted	Tele	phone Number
GESTRA Engineering, Inc 191 W. Edgerton Avenue, Milwaukee, WI 53207 04/24/2023 414-933-7444									

Property O	/ Owner_KELLEN H WESSON Parcel ID # DELT0809996 Pa							Page _	_2_ _{of} 3
B-36 O	bs. #	X Boring │ _{Pit} Grou	900.7 nd surface elev.	ft. [Depth to limiting	-4	8 _{in.}		
Horizon	Dopth	Dominant Color		Toxturo	Structure	Consistence	Boundary	0/ Book	Hydraulic App. Rate
HUHZUH	in.	Munsell	Qu. Sz. Cont. Color	Texture	Gr. Sz. Sh.	Consistence	Boundary	Frag.	Inches/Hi
Α	9	10YR 2/1	-	SICL	2, VF. SBK	MFR	-	< 5	0.04
В	48	10YR 3/4	-	С	2, VF. SBK	MVFI	-	< 10	0.07
С	72	10YR 5/8	-	GRSL	0, M	MVFR	-	15 - 25	0.50
С	120	10YR 5/8	-	GRSCL	0, M	MFI	-	15 - 25	0.11
С	144	10YR 6/4	-	GRSIL	0, M	MFR	-	15 - 20	0.13
С	186	10YR 5/6	-	VGRSIL	0, M	MVFI	-	35 - 45	0.13
B-37 Obs. # Boring Pit Ground surface elevft. Depth to limiting factorin.									
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
A	7.5	10YR 2/2	-	SIL	2, VF, SBK	MFR		< 5	0.13
В	36	10YR 3/4	-	С	2, VF, SBK	MVFI		< 10	0.07
С	72	10YR 5/8	-	GRSL	0, M	MVFR		22.3	0.50
С	144	10YR 5/8	-	GRSCL	0, M	MFI - MVFI		15 - 25	0.11
С	168	10YR 6/6	-	VGRSIL	0, M	MVFI		35 - 45	0.13
С	210	10YR 5/8	-	VGRLS	0, SG	MLO		40 - 50	1.63
B-38 O	bs. #	X Boring	Ind surface elev.	ft.	Depth to limiting	factor22	28 _{in.}		
Horizon	Donth	Dominant Color	Podox Description	Toyture	Structure	Consistance	Boundary	0/ Pool	Hydraulic App. Rate
Honzon	in.	Munsell	Qu. Sz. Cont. Color	Texture	Gr. Sz. Sh.	Consistence	Boundary	Frag.	Inches/Hr
A	6	10YR 2/2	-	L	2, VF, SBK	MFR	-	< 5	0.24
В	24	10YR 3/4	-	С	2, VF, SBK	MVFI	-	< 10	0.07
С	54	10YR 5/8	-	GRSCL	0, M	MFR	-	15 - 25	0.11
С	96	10YR 5/8	-	GRSICL	0, M	MFI	-	15 - 25	0.04
С	144	10YR 5/6 to 10YR 6/4	-	GRSCL	0, M	MFI - MVFI	-	15 - 30	0.11
С	168	10YR 5/1	-	GRSC	0, M	MVFI	-	15 - 20	0.04
С	228	10YR 6/1	-	GRSIL	0, M	MFR - MVFI	-	20 - 34	0.13

Property O	wner KE	LLEN H WESSO	N	Parcel ID #	DELT0809996		_	Page _	3_of3
B-39 O	bs. #	Boring Pit Groun	nd surface elev. 911.7	ft. I	Depth to limiting	factor -2	4		Hydraulic App. Rate
Horizon	Depth in.	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Inches/Hr
А	5	10YR 2/2	.=	SICL	2, VF, SBK	MFR		< 5	0.04
В	24	10YR 3/4	a n /a	С	2, VF, SBK	MFI		< 10	0.07
С	57	10YR 6/4	m, 1, D, 10YR 6/1	SICL	0, M	MFI	E)	5 - 14	0.04
С	96	10YR 5/8	1	GRSCL	0, M	MFI	1.5	15 - 25	0.11
С	144	10YR 6/4		GRSICL	0, M	MFI	20.	15 - 25	0.04
С	168	10YR 5/1	-	SIC	0, M	MFI	- *	10 -14	0.07
С	180	N 1/	-	S	0, SG	MLO	1.000	< 5	3.60
С	210	10YR 6/1		VGRSIL	0, M	MFR	1.94	35 - 45	0.13
Пo	bs. #	Boring							
		Pit Grour	nd surface elev	_ ft.	Depth to limitin	g factor	in.		Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	ft.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
		1			1				

Test Results and/or Summary Comments

*All borings terminated on possible bedrock refusal.

**Depth to limiting layer determined based on shallowest groundwater level observed during/after drilling, or depth to top of bedrock refusal.

B-38: Topsoil thickness assumed (not measured).

The Dept. of Safety and Professional is an equal opportunity service provider and employer. If you need assistance to access services or need material in an alternate format, contact the department at 608-266-3151 or TTY through Relay.

Wis. Dept. of Safety and Professional Services SOIL EVALUATION - STORM Page 1 of 8 Division of Industry Services in accordance with SPS 382.365 and 385, Wis. Adm. Code Page 1 of 8									
Attach include	complete s	site plan on paper mited to: vertical a	not less than 8 1/2 x 11 inche and horizontal reference point	es in size. P (BM), direc	lan must tion and	County Waukesha			
percen	t slope, sca	ale or dimensions	, north arrow, and BM referen	ced to near	est road.	DELT081199	9		
		Please	print all information.			Reviewed	by	Ŧ	Date
Perso	nal informati	on you provide may	be used for secondary purposes (F	Privacy Law, s	s. 15.04 (1) (m)).	J. Metzir	nger, E.I.		04/24/2023
KELL	Owner ENHV	VESSON		l l	Property Locatio	n IE 1/4 SE 1	/4 s 23	т 7 м	NR18 ₽(or)W
Property (Owner's Ma	ailing Address		1	Lot # Block	# Subd. Nan	ne or CSM#		
City		State Zip	Code Phone Number			Village 🔽	Town	Nearest	t Road
MEQUON WI 53092 ()					DELAFIELD			GOLF	ROAD
Drainage area sq. ftacres					Hydraulic Ap	plication Test	Method:		
Test Site Suitable for (check all that apply)				h(es)		X	Morpholo	ogical Eva	aluation
☐ Rain garden							Double-F	Ring Infiltr	ometer
☐ Infiltration trench ☐ SDS (> 15' wide) ☐ Other							Other (sp	pecify)	
B-17 0	bs. #	Boring	nd surface elev 925.0	ft ſ	Penth to limiting	factor -96	5 _{in}		
	L		Deday Description	Taustum			Deursdam.	0/ De als	Hydraulic App. Rate
Horizon	Deptn in.	Dominant Color Munsell	Qu. Sz. Cont. Color	lexture	Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Incnes/Hr
A	6	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	42	10YR 3/6	-	С	2, VF, SBK	MVFI	-	< 5	0.07
С	102	10YR 7/6	-	XGRLS	0, SG	MLO	-	70 - 85	1.63
	<u>ا</u>								
B-18 O	bs. #	Pit Grou	nd surface elev	ft. I	Depth to limiting	factor	8		Hvdrualic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
Α	т. 6	Munsell 10YR 3/3	Qu. Sz. Cont. Color	SII	Gr. Sz. Sh. 2. VF. SBK	MFR		Frag. < 5	0.13
B	36	10YR 3/6	_	C	2, VF, SBK	MFI		< 10	0.07
С	48	10YR 8/2	-	XGRS	0, SG	MLO		80 - 89	3.60
Cr	78	10YR 7/6	-	XGRLS	0, SG	MLO		70 - 85	1.63
CST/PSS Douglas	S Name (Pl Dettmer	ease Print) s, PE		Signature	Orylas Dettrus			CST/I 350	PSS Number 60-6
Address GESTR	A Engineer	ing, Inc 191 W.	Edgerton Avenue, Milwaukee	, WI 53207	Date Eva 04	luation Conduc /24/2023	sted	Tele 41	phone Number 4-933-7444

SBD-10793 (R03/13)

Page _____ of ____

Property C	Parcel ID # DELT0811999							Page _	of8
B-25 0	bs. #	Boring	932.6			-8-	4		
8 20	[Pit Grou	nd surface elev.	ft. I	Depth to limiting	factor	in.		Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.		Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	0.40
	7.5	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	48	10YR 3/6	-	CL	2, VF, SBK	MFI	-	< 5	0.03
С	96	10YR 4/4	-	VGRLS	0, SG	MLO	-	35 - 45	1.63
С	144	10YR 5/8	-	XGRS	0, SG	MLO	-	80 - 89	3.60
	l			I		-	-		
B-26 Obs. # \square Boring 938.3 the Depth to limiting factor -60									
							""•		Hydraulic App. Rate
Horizon	Depth in	Dominant Color Munsell	Redox Description	lexture	Gr Sz Sh	Consistence	Boundary	% Rock	Inches/Hr
A	8	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	48	10YR 4/6	-	CL	2, VF, SBK	MFI	-	< 10	0.03
С	84	10YR 5/6	-	SICL	0, M	MFI	-	< 5	0.04
С	120	10YR 5/6	-	GRSCL	0, M	MFR - MFI	-	15 - 25	0.11
С	156	10YR 5/8	-	GRSCL	0, M	MVFI	-	20 - 34	0.11
Cr	180	10YR 5/6	-	XGRS	0, SG	MLO	-	60 - 70	3.60
Cr	192	10YR 6/6	-	XGRLS	0, SG	MLO	-	65 - 85	1.63
		Boring	939 0			_13	20		
B-27 0	bs.#[Pit Grou	and surface elev.	ft.	Depth to limiting	factor	in.		Liudaeulia Ann. Data
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
A	13	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	19	10YR 4/6	-	SC	2, VF, SBK	MFI	-	< 10	0.04
С	78	10YR 5/6	f, 1, P, 10YR 6/1	SICL	0, M	MFI	-	< 5	0.04
С	138	10YR 5/6	-	GRSCL	0, M	MFI	-	15 - 25	0.11
С	168	10YR 5/8	-	GR	0, SG	MLO	-	> 90	3.60
С	180	10YR 5/4	-	XGRCL	0, SG	MLO	_	70 - 85	0.03

Property C	wner KEL	LEN H WESSO	N P	arcel ID # _	DELT0811999		_	Page	3 of 8
B-29 O	/bs. #	Boring Pit Groun	nd surface elev	ft. I	Depth to limiting	factor -15	56 _{in.}		Distantia Van Data
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
State Scherenzen	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.		Scotling Brendstern	Frag.	
А	9	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	24	10YR 3/6		CL	2, VF, SBK	MFI		< 5	0.03
С	48	10YR 4/6	-	GRSCL	0, M	MFI	-	15 - 20	0.11
С	84	10YR 6/4	-	GRSL	0, M	MFR	-	15 - 20	0.50
С	108	10YR 5/6		VGRLS	0, SG	MLO	6.	35 - 45	1.63
С	144	10YR 5/8	r =	S	0, SG	MLO		< 5	3.60
С	204	10YR 5/8		L	0, M	MFR	-	< 10	0.24
Cr	240	10YR 7/4		GR	0, SG	MLO		< 90	3.60
B-30 Obs. # Boring Pit Ground surface elev. 948.5 ft. Depth to limiting factor -156 in. Hydraulic App. Rate									
Horizon	Depth in.	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Inches/Hr
Α	24	10YR 3/3		SIL	2, VF, SBK	MFR	-	< 5	0.13
В	48	10YR 3/6	c, 1, P, 10YR 3/3	С	2, VF, SBK	MFI	-	< 10	0.07
С	84	10YR 5/8	-	GRSCL	0, M	MFI	-	15 - 34	0.11
С	108	10YR 5/8	-	VGRS	0, SG	MLO	-	35 - 45	3.60
Cr	156	10YR 7/2		XGRS	0, SG	MLO	-	75 - 89	3.60
B-33 O	bs. # [Boring Pit Grou	Ind surface elev.	ft.	Depth to limiting		4in.	1	Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
А	6	10YR 2/2	-	L	2, VF, SBK	MFR	-	< 5	0.24
B/FILL	24	10YR 3/4	-	С	2, VF, PL	MFI		< 10	0.07
B/FILL	29	10YR 3/3		GRSC	2, VF, SBK	MFI	-	14 - 20	0.04
С	125	10YR 5/6	-	GRSL	0, M	MFR	-	23.8	0.50
Cg	204	5G 5/1	c, 2, D, 2.5Y 4/2	SICL	0, M	DEH	-	5 - 10	0.04

Property C	Owner KELLEN H WESSON Parcel ID # DELT0811999 Page _						of8		
B-34 0	bs. #	Boring	929.6	<i>.</i>		-3	6		
	l	_ Pit Grou	nd surface elev	tt. I	Depth to limiting	factor	in.		Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
A	5	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	30	10YR 3/4	-	C	2, VF, SBK	MVFI	-	< 10	0.07
С	132*	10YR 5/6	-	VGRSL	0, M	MFR	-	35 - 55	0.50
	*With 10Y	TR 2/1 gravel layer a	t 126 inches						
	bo #	X Boring	916.2			_1	8		
B-1 0	JUS. #	Pit Grou	ind surface elev.	ft.	Depth to limiting	g factor	• O in.		Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
А	10	10YR 2/1	-	SICL	2, VF, SBK	MFR	-	< 5	0.04
В	24	10YR 5/3	f, 1, D, 10YR 4/6	SICL	2, VF, SBK	MFR	-	< 10	0.04
С	48	10YR 6/6	-	GRSCL	0, M	MFR	-	15 - 30	0.11
С	96	10YR 6/4	c, 1, D, 10YR 6/1	VGRSCL	0, M	MFR	-	35 - 45	0.11
С	114	10YR 6/2	-	XGRLS	0, SG	MLO	-	75 - 84	1.63
	. , [Boring	926.8	•	•	1 ^	14	•	
B-15 0	bs. # [Grou	and surface elev.	ft.	Depth to limiting	factor	• • in.		Linder Ver Ann Dete
Horizon	Denth	 Dominant Color	Redax Description	Texture	Structure	Consistence	Boundary	% Rock	Hydraulic App. Rate
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.		Soundary	Frag.	monoonn
A	10	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	48	10YR 3/4	-	CL	2, VF, SBK	MFI	-	< 10	0.03
С	72	10YR 5/8	-	GRSCL	0, M	MFR	-	20 - 30	0.11
С	78	10YR 2/2	-	VGRS	0, SG	MLO	-	35 - 40	3.60
С	114	10YR 5/6	-	GRSIL	0, SG	MLO	-	15 - 25	0.13
					· ·				

Property C	Dwner KELLEN H WESSON Parcel ID # DELT0811999						Page _	of8	
B-16 C)bs. #	Boring Pit Grou	930.5 nd surface elev.	ft. I	Depth to limiting	factor	0		
Horizon	Donth	 Dominant Color	Podox Description	Toxturo	Structuro	Consistanco	Boundary	% Rock	Hydraulic App. Rate
110112011	in.	Munsell	Qu. Sz. Cont. Color	Texture	Gr. Sz. Sh.	Consistence	Boundary	Frag.	Inches/In
Α	9	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	48	10YR 3/4	-	CL	2, VF, SBK	MFI	-	< 10	0.03
С	72	10YR 5/8	-	GRSCL	0, M	MFR	-	15 - 25	0.11
С	102	10YR 5/8	-	VGRLS	0, SG	MLO	-	40 - 55	1.63
B-19 C)bs. #	X Boring	nd surface elev.	ft.	Depth to limiting	-1	14 _{in.}	1	
	<u> </u>			. . .					Hydraulic App. Rate
Horizon	Deptn in	Dominant Color Munsell	Redox Description	lexture	Gr Sz Sh	Consistence	Boundary	Frag	Inches/Hr
A	9	10YR 3/3	-	SICL	2, VF, SBK	MFI	-	< 5	0.04
В	36	10YR 5/4	-	SC	2, VF, SBK	MVFI	-	< 5	0.04
С	56	10YR 5/6	-	s	0, SG	MLO	-	< 5	3.60
С	114	10YR 5/6	-	GRSCL	0, M	MEF	-	15 - 25	0.11
B-20 O)bs. #	Boring	Ind surface elev.	ft.	Depth to limiting	factor7	8in.		
Horizon	Depth	Dominant Color	Reday Description	Toyture	Structure	Consistence	Boundary	% Rook	nyuraulic App. Kate
	in.	Munsell	Qu. Sz. Cont. Color	Texture	Gr. Sz. Sh.	Consistence	Боиндагу	Frag.	Inches/Hi
A	9	10YR 2/1	-	SIL	2, VF, SBK	MFR	-	< 10	0.13
В	24	10YR 3/4	f, 1, D, 10YR 2/1	С	2, VF, SBK	MVFI	-	< 10	0.07
В	48	10YR 4/3	c, 1, D, 10YR 7/1	SIC	2, VF, SBK	MFR	-	5 - 14	0.07
С	78	10YR 5/8	c, 1, P, 10YR 6/2	SIC	0, M	MFR	-	< 10	0.07

Property C	wner KEL	LEN H WESSO	<u>N</u> P	arcel ID # _	DELT0811999			Page _	_6 _{of} 8
B-23 0	bs. #	Boring	940.9	-		-12	26		
	l	Pit Grou	nd surface elev1	ft. L	Depth to limiting	factor	in.		Hydraulic App. Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	2.40
A	10	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	48	10YR 3/6	-	GRL	2, VF, SBK	MFI	-	15 - 30	0.24
С	72	10YR 5/8	-	VGRLS	0, SG	MVFR	-	35 -45	1.63
С	96	10YR 5/6	-	VGRS	0, SG	MLO	-	35 - 45	3.60
С	126	10YR 5/6		VGRLS	0, SG	MVFR	-	40 - 50	1.63
		X Boring	040.7	<u> </u>	1	10			
B-24 O	bs. # [Pit Grou	Ind surface elev.	ft.	Depth to limiting	g factor	J.ວ 		
Horizon	- Denth	Dominant Color	Reday Description		Structure	Consistence	Roundary	% Rock	Hydraulic App. Rate
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.	Consistence	Doundary	Frag.	inoneo,r ii
A	8	10YR 3/3	_	L	2, VF, SBK	MFR	-	< 5	0.24
С	24	10YR 7/4	-	XGRS	0, SG	MLO	-	70 - 85	3.60
С	84	10YR 5/6	-	GRSCL	0, M	MFI	-	15 - 30	0.11
С	126	10YR 5/8	-	VGRSICL	0, M	MVFI	-	35 - 45	0.04
	. [Boring	 Q/3 /	1	1	1/	11	1	
B-28 O	bs.# [Pit Grou	und surface elev.	ft.	Depth to limiting	factor	+ - + in.		
Horizon	- Denth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Hydraulic App. Rate
	in.	Munsell	Qu. Sz. Cont. Color	rovitor o	Gr. Sz. Sh.		Deanaary	Frag.	
A	10	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	48	10YR 3/4	-	С	2, VF, SBK	MFI	-	5 - 14	0.07
С	66	10YR 5/8	-	VGRSL	0, M	MFR	-	51.9	0.50
С	96	10YR 5/8	-	XGRS	0, SG	MLO	-	70 - 80	3.60
С	144	10YR 5/8	-	VGRS	0, SG	MLO	-	40 - 59	3.60
С	168	10YR 5/4	_	XGRLS	0, SG	MLO	-	80 - 89	1.63
С	193	10YR 4/4	_	VGRSCL	0, M	MVFI	-	45 - 55	0.11

Property C	erty Owner KELLEN H WESSON Parcel ID # DELT0811999						Page _		
B-31 O	bs. # [X Boring Pit Grou	939.7 nd surface elev.	ft. I	Depth to limiting	_ 9	6		Hydraulic App Rate
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
A	10	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	52	10YR 3/6	-	SICL	2, VF, SBK	MFI	-	< 5	0.04
С	132	10YR 5/8	-	GRSIL	0, M	MFR - MFI	-	15 - 25	0.13
Cr	180	10YR 7/4	-	XGRSL	0, SG	MLO	-	75 - 85	0.50
B-32 O	bs. #	X Boring	939.7	4	Donth to limiting	_9	6	•	
	<u>ا</u>	Pit Grou		π.	Depth to limiting	g factor	in.		Hydraulic App. Rate
Horizon	Depth in	Dominant Color Munsell	Redox Description	Texture	Structure Gr. Sz. Sh	Consistence	Boundary	% Rock	Inches/Hr
A	8	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	36	10YR 3/6	-	SICL	2, VF, SBK	MFI	-	< 10	0.04
С	84	10YR 6/4	-	GRSCL	0, M	MFR	-	15 - 25	0.11
С	96	10YR 8/2	-	XGRS	0, SG	MLO	-	60 - 75	3.60
С	120	10YR 6/6	-	XGRLS	0, SG	MLO	-	60 - 75	1.63
С	144	10YR 6/6	-	XGRSICL	0, M	MFR	-	60 - 75	0.04
Cr	192	10YR 6/6	-	XGRLS	0, SG	MLO	-	70 - 85	1.63
B-35 O	bs. #	Boring	ind surface elev.	ft.	Depth to limiting	_ -1()8_ _{in.}		Hudroulia Ann Data
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
A	9	10YR 3/3	-	SIL	2, VF, SBK	MFR	-	< 5	0.13
В	24	10YR 3/6	-	SIC	2, VF, SBK	MFI	-	< 10	0.07
С	48	10YR 3/4	-	SC	0, M	MFR	-	10 - 14	0.04
С	84	10YR 5/8	-	GRSCL	0, M	MFR	-	15 - 25	0.11
С	102	10YR 6/6		VGRS	0, SG	MLO	-	40 - 55	3.60
С	144	10YR 7/6	-	XGRS	0, SG	MLO	_	70 - 80	3.60
С	156	10YR 4/6	-	VGRSCL	0, M	MLO	-	70 - 80	0.11

Property Owner	KELLEN H WESSON

Parcel ID # _____

I I'	Obs. # Boring								
								Hydraulic App. Rate	
Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Inches/Hr
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.			Frag.	
Obs. # Boring									
	JDS. #		ind surface elev.	ft.	Depth to limitin	a factor	in.		
	Jbs. # [Pit Grou	nd surface elev	ft.	Depth to limitin	g factor	in.		Hydraulic App. Rate
Horizon	Depth	Pit Grou	nd surface elev Redox Description	ft. Texture	Depth to limitin Structure	g factor Consistence	in. Boundary	% Rock	Hydraulic App. Rate Inches/Hr
Horizon	Depth in.	Pit Grou	nd surface elev Redox Description Qu. Sz. Cont. Color	ft. Texture	Depth to limitin Structure Gr. Sz. Sh.	g factor Consistence	in. Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr
Horizon	Depth in.	Pit Grou Dominant Color Munsell	nd surface elev Redox Description Qu. Sz. Cont. Color	ft. Texture	Depth to limitin Structure Gr. Sz. Sh.	g factor Consistence	in. Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr
Horizon	Depth in.	Pit Grou Dominant Color Munsell	nd surface elev Redox Description Qu. Sz. Cont. Color	ft. Texture	Depth to limitin Structure Gr. Sz. Sh.	g factor Consistence	Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr
Horizon	Depth in.	Pit Grou Dominant Color Munsell	Ind surface elev Redox Description Qu. Sz. Cont. Color	ft. Texture	Depth to limitin Structure Gr. Sz. Sh.	g factor Consistence	in. Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr
Horizon	Depth in.	Pit Grou Dominant Color Munsell	Ind surface elev Redox Description Qu. Sz. Cont. Color	ft. Texture	Depth to limitin Structure Gr. Sz. Sh.	g factor Consistence	in. Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr
Horizon	Depth in.	Pit Grou Dominant Color Munsell	Ind surface elev Redox Description Qu. Sz. Cont. Color	ft. Texture	Depth to limitin Structure Gr. Sz. Sh.	g factor Consistence	in. Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr
Horizon	Depth in.	Pit Grou Dominant Color Munsell	Ind surface elev Redox Description Qu. Sz. Cont. Color	ft. Texture	Depth to limitin Structure Gr. Sz. Sh.	g factor Consistence	in. Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr

Test Results and/or Summary Comments

*All borings terminated on possible bedrock refusal.

**Depth to limiting layer determined based on shallowest groundwater level observed during/after drilling, or depth to top of bedrock refusal.

The Dept. of Safety and Professional is an equal opportunity service provider and employer. If you need assistance to access services or need material in an alternate format, contact the department at 608-266-3151 or TTY through Relay.

GENERAL NOTES							
DR	ILLING AND SAMPLING SYMBOLS	TEST SYMBOLS					
SYMBOL	DEFINITION	SYMBOL	DEFINITION				
HSA HSA w/ RW SS SH AU CA RC HA GB R NMR NE	Hollow Stem Auger Hollow Stem Auger converted to Rotary Wash Boring (initiated with Mudding Fluid) 2" O.D. Split Spoon Sample – (ASTM D 1586) 3" Thin-Walled Tube Sample (Shelby Tube) – (ASTM D 1587) Solid Stem Auger Sample Modified California Sample – (ASTM D 3550) Rock Core Sample – (ASTM D 2113) Hand Auger Sample Grab Bag Sample SPT Refusal (N-value of 50 blows for less than 6 inches of penetration) No Measurement Recorded Not Encountered	MC LOI Qp Qu Y _d Y _T LL, PL PI P200 Ts SG pH RQD	Moisture Content (%) – (ASTM D 2216) Organic Content (Loss on Ignition) (%) – (ASTM D 2974) Hand Penetrometer Reading (tsf) Unconfined Comp. Strength (tsf) – (ASTM D 2166) Dry Density (pcf) – (ASTM D 7263) Total (Moist) Density (pcf) Liquid and Plastic Limit (%) – (ASTM D 4318) Plasticity Index (%) Percent passing the #200 Sieve – (ASTM D 1140) Hand Torvane Reading (tsf) Specific Gravity – (ASTM D854) Hydrogen Ion Content – (ASTM D4972) Rock Quality Designation (%) – (ASTM D6032)				

WATER LEVEL

Water levels shown on the boring logs are the levels measured in the borings at the time and under the conditions indicated. In some soils, it may not be possible to determine the groundwater level within the normal time required for test borings and an extended period of time may be necessary to reach equilibrium. Therefore, the position of the water level symbol may not indicate the true level of the groundwater table. Perched water refers to water above an impervious layer, thus impeded in reaching the water table. The available water level information is given at the bottom of the respective boring log sheet.

DESCRIPTIVE TERMINOLOGY								
DENSITY TERM Very Loose	SPT N- VALUE 0 - 4	CONSISTENC TERM	CY Unconfine Compressiv Strength, (ts	d SPT N- ve VALUE sf)	Lamination Layer	Up to 1/2" thick horizontal stratum 1/2" thick or greater horizontal stratum		
Loose Medium Dense Dense Very Dense	4 - 10 10 - 30 30 - 50 Over 50	Very Soft Soft Medium Stiff Stiff Very Stiff Hard	<0.25 0.25 - 0.49 0.50 - 0.99 1.00 - 1.99 2.00 - 3.99 4.0+	$\begin{array}{c} 0 - 2 \\ 2 - 4 \\ 4 - 8 \\ 0 \\ 8 - 16 \\ 0 \\ 16 - 30 \\ \text{Over 30} \end{array}$	Lens Varved Dry Moist Wet	1/2" to 6" discontinuous horizontal stratum Alternating laminations Powdery, dusty Damp, below saturation Saturated, above liquid limit		
Standard Penetration Test N-Value: Blows per Foot of a 140 Pound Hammer Falling 30 inches on a 2-inch OD Split Barrel Sampler Note: If unconfined compressive strength data is not available, then N-value should be used to describe consistency term								
RELATIVE SIZES								
U.S. Standard Sieve								
12" 3" #4				#200				
	Boulders	Cobbles	Gravel	Sand	Silt	Clay		
		300 75	4.7	75	0.075	0.002		
Grain Size (mm)								
SOILS CLASSIFICATION FOR ENGINEERING PURPOSES

ASTM Designation: D 2487 - 83

SOIL ENGINEERING

(Based on Unified Soil Classification System)

				S	oil Classification ^B
	Criteria for As	signing Group Symbols and 0	Group Names Using Laboratory Tests	Group Symbol	Group Name
Coarse-Grained Soils	Gravels	Clean Gravels	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$	GW	Well-graded gravel ^F
More than 50% retained on	More than 50% coarse	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly-graded gravel F
No. 200 sieve	fraction retained on	Gravels with Fines	Fines Classify as ML or MH	GM	Silty gravel ^{F.G.}
	No. 4 sieve	more than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F.G.}
	Sands	Clean sands	Cu ≥ 6 and 1 ≤ Cc ≤ 3 E	SW	Well-graded sand ^H
	50% or more of coarse	Less than 5% fines ^D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly-graded sand ^H
	fraction passes No.	Sands with Fines	Fines Classify as ML or MH	SM	Silty sand G.H
	4 sieve	more than 12% fines ^D	Fines classify as CL or CH	SC	Clayey sand ^{G.H}
Fine-Grained Soils	Silts and Clavs	Inorganic	PI > 7 and plots on or above		
50% or more passes the	Liquid Limit less than 50	5	" A" line '	CL	Lean clay ^{3.A.L}
No. 200 sieve			PI < 4 or plots below " A "		
10.200 0000			line ⁷	ML	Silt ^{J.K.L}
		Organia	Liquid limit oven dried	01	Organia alau J.K.L.M
		Organic		— < 0.75	Organic Clay
			Liquid limit - not dhea		Organic Sit
	Silts and Clays	Inorganic	PI plots on or above " A " line	e CH	Fat clay ^{J.K.L}
	Liquid Limit 50 or more		PI plots below " A " line	MH	Elastic silt J.K.L
		Organic	Liquid limit - oven dried	- < 0.75 OH	Organic clay ^{J.K.L.O}
			Liquid limit - not dried		Organic Silt ^{J.K.L.P}
 ^A Based on the material passing the 3-in (75- mm) sieve ^B If field sample contained cobbles or boulders, or both, add with cobbles and/or boulders after group name ^C Gravels with 5 to 12 % fines require dual symbols: GW - GM (well-graded gravel with silt) GW - GC (well-graded gravel with clay) GP - GM (poorly-graded gravel with clay) ^D Sands with 5 to 12 % fines require dual symbols: SW - SM (well-graded sand with silt) SW - SC (well-graded sand with clay) SP - SC (poorly-graded sand with clay) 		$C_{u} = \frac{L_{60}}{D_{10}} \qquad C_{c} = \frac{L_{30}}{D_{10} \times D_{60}}$ F If soil contains ≥ 15% sand, add "with sand" after group name G If fines classify as CL-ML, use dual symbol GC-GM. or SC-SM H If soil contains ≥ 15% gravel, add "with gravel" after group name. I If Atterberg limits plot in hatched area, soil is a CL-ML (silty clay)		 an out contains 10 to 2000 pilot Net 2000, dud, with dark or " with gravel", whichever is predominant ^K If soil contains ≥ 30% plus No.200, and predominantly sand, add "sandy" before the group name ^L If soil contains ≥ 30% plus No.200, and predominantly gravel, add "gravelly" before the group name ^M PI ≥ 4 and plots on or above "A" Line ^N PI < 4 or plots below "A" Line ^P PI plots below "A" Line 	
SIEVE ANAI SCREEN (in)	D ₃₀	60 60 60 60 60 60 60 60 60 60	ATTERI For classification of fine grained solls and fine-grained fraction of coarse - grain Solls. Equation of "A" - Line Horizontal at PI = 4 to LL=25.5 then PI = 0.7 (LL-0) Equation of "U" - Line Verifical at LL = 16 to PI= Verifical at LL = 16 to PI= CL-ML ML or OL	BERG LIMITS	• A ^x (rre
	- 5 0		0 10 16 20 30 40	50 60 70	80 90 100 110
PARTICLE SI	ZE IN MILIMETERS		LIG	UID LIMIT (LL)	

SOILS CLASSIFICATION FOR ENGINEERING PURPOSES

(Based on United States Department of Agriculture - Natural Resources Conservations Service)

SOIL ENGINEERING

		U.S. Standard Sieve No	USDA Soil Name Class	USDA Soil Name Classification	
	> 25"	Boulders	Boulders		
ROCK FRAGMENTS	- 20	Stones			
		3" < 10"	Cobbles		
		3/4" < 3"	Coarse Gravel		
		$\frac{3}{4} < 3/4$ "	Medium Gravel		
		#10 < #4	Fine Gravel		
FINE EARTH	Sand	#18 < #10	Very Coarse Sand		
		#35 < #18	Coarse Sand		
		#60 < #35	Medium Sand		
		#140 < #60	Fine Sand		
		#300 < #140	Very Fine Sand		
	Silt	0.02 mm < 0.05 mm	Coarse Silt	Coarse Silt	
		0.002 mm < 0.02 mm	Fine Silt		
	Clay	0.0002 mm < 0.002 mm	Coarse Clay		
	-	< 0.0002 mm	Fine Clay		
(Sail) Taxtur	al Triangle: ^B		Texture Classes C	Code	
Fine Farth Texture	Classes (Coarse Sand	COS	
			Sand	s	
100			Fine Sand	ES	
100			Very Fine Sand	VES	
	19		Loamy Coarse Sand	LCOS	
90 X	\rightarrow .		Loamy Sand	LOOD	
	Loamy Eine Sand	LS			
/ 80 / X X	\times		Loamy Very Eine Sand		
	$\langle \gamma \rangle$		Coarros Sandy Loom	COSI	
	$\sqrt{\sqrt{\gamma}}$			CUSL	
				SL	
	V V V & C			FSL	
2° 60 XXXX	XXXX &		Very Fine Sandy Loam	VFSL	
	$\times \times \times \times \times \times \times$	4	Loam	L	
50 X X X X X	\times X X siltv λ		Silt Loam	SIL	
	$\langle \chi \chi \rangle$ clay \rightarrow	0	Silt	SI	
40 clay	VVVVV	6	Sandy Clay Loam	SCL	
		7 ~/	Clay Loam	CL	
	v Clay loam	$\wedge \approx \wedge$	Silty Clay Loam	SICL	
sandy sandy	AAAAA		Sandy Clay	SC	
X clay loam XXX	XXXXXX	$\times \wedge \circ$	Silty Clay	SIC	
20 \times	X X silt	(X)	Clay	C	
sandy XXX		X X A	Rock Fragment Texture Modifiers ^B	Vol.	
loam XXX			None	< 15	
sand sand	Size Adjective (i.e. Gravelly)	15 to < 3			
	Very (Size Adjective)	35 to < 0			
		0 0	Extremely (Size Adjective)	60 to < 9	
Sand Separ	ate, %	-	Fragment Size Class Name	<u>></u> 90	
ased on page 2-45 of Field Book for Describing and Sampling Soils V3.0					
and on page 2.29 of Field Book for Depariting and Compling Calls V/2.0					
ised on page 2-36 of Field Book for Describing and Sampling Solis V3.0					

APPENDIX II

LABORATORY TEST RESULTS

LABORATORY TEST RESULTS ATTERBERG LIMITS RESULTS (ASTM D4318)

Project Name: Thomas Farms Development

Project Number: 23083-10

Project Location: Delafield, Wisconsin

LABORATORY TEST RESULTS GRAIN SIZE DISTRIBUTION (ASTM D6913 and D7928)

Project Name: Thomas Farms Development

Project Number: 23083-10

Project Location: Delafield, Wisconsin

LABORATORY TEST RESULTS GRAIN SIZE DISTRIBUTION (ASTM D6913 and D7928)

Project Name: Thomas Farms Development

Project Number: 23083-10

Project Location: Delafield, Wisconsin

